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ABSTRACT

Previous work on efficiency of light injection into the core of a fiber from a
thin film and a bulk distribution of sources in the cladding, have made use of
the fields of a weakly guiding fiber. This approximation simplifies the
analysis of the power efficiency by introducing universal values for the
eigenvalues of different fibers with same V-number, but can not predict
accurately the behavior of the injected light into a fiber with arbitrary
differences in indices of refraction. We have used the exact field solution in
the expressions of the power efficiency, P4, and analyzed its behavior as a

function of the remaining parameters. Although more complicated and
harder to interpret, our formulas allow us to analyze the power injection
efficiency of fibers with arbitrary differences in the indices of refraction. The
results obtained are relevant for the design of more efficient optical fiber
distributed sensors. The conclusions follow.

We have confirmed weakly guiding results obtained previously. However,
we have found that the P.¢ does not always increase with the V-number

but with the difference in the indices of refraction, MeoreMelad-

For fixed a/A, indices of refraction, Meoredand M.aq @nd normalized inner
and outer radius, R;, and R, the P i is independent of the core radius, a,

and the wavelength, 4, for any uniform cylindrical distribution of cladding
sources. This suggests that a/4, R, and R, are independent variables.

For the bulk distribution we have found that P ¢ increases with the

wavelength, 4, and decreases with the fiber core radius, a, i.e, it decreases
with the V-number. However, for the thin film, the P ¢ remains almost

constant with the wavelength, A, and fiber core radius, a.
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INJECTION EFFICIENCY OF BOUND MODES



L. INTRODUCTION

I-1 Justification

In this work we have obtained expressions for the power injection efficiency,
P from cladding sources of a step index profile cylindrical optical fiber
using the Maxwell's Equations. We have also determined the general
behavior of P, against the parameters of this problem extending previous
work done by Marcuse [1988] on the efficiency of core light injection from
sources in the cladding. Our results are unique in the sense that we have
made use of the exact field solution of the cylindrical optical fiber to calculate
the power efficiency due to the emission of evanescent waves and analyzed
its behavior as a function of parameters and their combinations not
previously treated. Previous results that are related to our work, have either
made use of the geometric optics theory to calculate and optimize the output
signal of a fluorescent coated fiber [Glass et. al., 1987; Love et. al., 1988] or used
the weakly guiding approximation of the fields to calculate the power
efficiency [Marcuse, 1988]. The first approach, geometric optics, is accurate
only for multimode fibers and the second approach, weakly guiding
approximation, can not predict the behavior of a fiber that has a large
difference between the core and cladding indices of refraction. In this work,
we have used the exact field solution in the expression of the power efficiency

in order to take into account the shortcomings of both approaches. In this

2
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I. Introduction 3

way, we have been able to determine accurately the behavior of a few mode
optical fibers and the behavior of fibers that have an arbitrary difference of
indices of refraction. Our results can be used to model optical fiber chemical

sensors that have a fluorescent or chemiluminescent cladding.
I-2 Overview

In this Chapter we present an overview of previous theoretical and
experimental results that are related to this work. In Chapter II, we derive the
fields of both arbitrary and weakly guiding fibers with an infinite cladding. A
more detailed presentation of the results in that Chapter can be found in
many good optical fiber textbooks [Snyder et. al., 1983; Marcuse, 1974;
Midwinter, 1979] and earlier papers on this subject [Snitzer, 1961; Gloge, 1971
and references therein]. In Chapter III, we derive the power injection
efficiency from sources in the cladding using the exact field solution of an
optical fiber. For the first time, this derivation allows us to predict the
behavior of fluorescent cladding fibers with arbitrary differences in indices of
refraction. The weakly guiding approximation referred to earlier, can be used

only with fibers that have similar core/cladding indices of refraction.

Chapter IV is central to this work. It presents the numerical results obtained
from our FORTRAN program which has made use of the formulas derived
in Chapters II and IIL In that Chapter, we have plotted the behavior of the
power efficiency of a fiber as a function of its parameters namely, the core

radius, a, the indices of refraction Neoreand 1.4, and the wavelength, A.
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We have also plotted the power efficieney against a combination of these
parameters as M qyrgMclad and the V-number under certain conditions.
There, the results for a new independent variable, a/ A, is discussed. Our
work has confirmed previous weakly guiding results, given a new insight
into the behavior of an optical fiber with an arbitrary difference in the indices
of refraction and helped determine the configuration of a highly efficient
fiber. These results are relevant in that they point toward the design of

improved optical chemical distributed sensors.

Finally, in Chapter V, we have concluded and summarized the results
obtained here and recommended further additional work that could both

verify and improve our theory.

I-3 Theoretical and Experimental Background

Optical fiber sensors have been used to measure current, pressure,
temperature, and other physical observables [Culshaw, 1984 and references
therein]. They can also be used to monitor vibrations in flexible structures
and detect chemical species [Rogowski et. al., 1988; Hardy et. al,, 1975;
Lieberman et. al., 1988; Lieberman et. al., 1990; Blyler et. al., 1988; Wolfbeis et.
al., 1988]. Many optical techniques have been employed in conjunction with
optical fibers. They exploit both the wave and corpuscular nature of light.
Geometrical optics theory is used whenever the wave aspect of light can be

disregarded and for this reason it is an incomplete theory.
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Here, we will be mostly concerned with the wave aspect of light. By using
Maxwell's Equations, phenomena like evanescent waves can be studied and
predicted more accurately. It is the concept of evanescent wave that is central
to this work. It comes into play whenever radiation is totally internally
reflected between two dielectric media of different indices of refraction.
Although most of the incident power is reflected, part of the radiation
penetrates a very thin layer of the dielectric of lower index of refraction. This
penetrating radiation is termed the evanescent component of the field and is

characterized by

1) an amplitude that has an exponential-like decay from the dielectric
boundary and
2) a direction of propagation that is parallel to the dielectrics interface

[Jackson, 1975; Ghatak et. al., 1978].

As consequence of 2, all the power in the dielectric medium of lower index

propagates parallel to the interface (Figure I-1).

Evanescent waves are responsible for the Goos-Hinchen Effect. It occurs
whenever a totally internally reflected light beam in a plane dielectric
interface undergoes a lateral shift due to the penetration of the field into the
lower refractive index medium or evanescent region [Ghatak et. al., 1978;
Midwinter, 1979]. The larger the wavelength of the radiation the larger the

lateral shift.
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Propagation direction of
evanescent radiation

incident reflected
radiation radiation

Figure I-1. The field amplitude of the evanescent wave decays exponentially
further from the media interface. Its direction of propagation is parallel to the

interface. 6, is the critical angle.
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Evanescent waves can also give rise to other unusual phenomena. They can
be absorbed and used to excite fluorescent sources in the evanescent region
[Tai et. al., 1987; Glass et. al., 1987; Carniglia et. al., 1972; Lee et. al., 1979; Love
et. al., 1988]. The principle of reciprocity, in conjunction with the above
results, would lead us to expect that the inverse process should also take
place [Carniglia et. al., 1972]. In other words, if an excited molecule placed near
the interface of two dielectrics in the lower index of refraction region can emit
evanescent waves, we should be able to detect radiation propagating at an
angle higher than the critical angle (Figure I-2). Such high angle propagation
was observed by Selenyi [1913] and Frohlich [1921] and quantitatively
explained by Carniglia et. al. [1972].

In conclusion, evanescent waves can be used to excite sources in the
-evanescent region. The inverse process, emission of evanescent waves by

excited molecules can also take place and is a well-established phenomenon.
I-4 Previous Work on Evanescent Wave Sensor

The evanescent wave concept has been theoretically and ‘experimentally
investigated and widely used for sensing purposes [Tai et. al., 1987; Glass et.
al., 1987; Carniglia et. al., 1972; Lee et. al., 1979; Love et. al., 1988; Selenyi, 1913;
Frohlich, 1921; Lieberman et. al., 1990; Cox et. al., 1985; Lieberman et. al., 1988;
Christensen et. al., 1989; Marcuse, 1988].
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Radiating n_>n
Source

Figure I-2. Source placed near the interface of two media in the region of
lower refractive index. Light rays observed at 6>6. (arrows in medium 1),
are due to the evanescent waves emitted by the source in medium 2.
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Tai et. al. have used solely the absorp‘tion of the evanescent wave to
determine the concentration of methane-gas with a tapered optical fiber [Tai
et. al., 1987]. In their approach, a He-Ne laser excites bound modes in the fiber.
The chemical species surrounding the tapered region of the fiber, absorbs the
evanescent wave associated with these modes at a specific wavelength. This
absorption can be detected at the end of the fiber as a decrease in the output

signal level and is related to the concentration.

The effect of the numerical aperture (N.A.) on signal level of multimode
fibers with fluorescent substances in the evanescent zone was treated (2).
Using a N.A. smaller than the maximum N.A. of the sensor, the authors
have excited fluorescent sources in the evanescent zone. Due to the emission
of evanescent wave, some of the light is trapped in the core as bound modes
and can be detected at both ends of the fiber. Due to the background noise, the
signal was chosen to be collected at the proximal end of the fiber. The theory

developed was shown to be in good agreement with the experimental results.

The effect of the numerical aperture (N.A.) of injected light on signal level of
multimode fibers coated with a fluorescent substance in the evanescent zone
was treated [Glass et. al., 1987]. Using a N.A. smaller than the maximum
N.A. of the sensor, the authors injected light into a multimode fiber. The
evanescent field of the radiation excited the fluorescent sources. Due to the
emission of evanescent wave, some of the light is trapped in the core as
bound modes and can be detected at both ends of the fiber. Due to the

background noise, the signal was chosen to be collected at the proximal end of
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the fiber [Hirschfeld et. al., 1984; 1984a; Block et. al., 1984; Block et. al., 1986].
The theory developed used geometric optics and was shown to be in good

agreement with the experimental results.

Using the emission of evanescent photons, Lieberman et. al. have developed
an optical fiber sensor with a fluorescent cladding to detect molecular oxygen
[Lieberman et. al., 1990]. In this case, an optical fiber is clad during
manufacture with a polymer which has a fluorescent dye dissolved in it (the
dye itself is sensitive to the presence of molecular oxygen [Cox et. al., 1985]).
The dye dissolved in the polymer, Poly-dimethyl Siloxane, PDMS, acts like a
fluorescent cladding when excited by side-illumination at a wavelength
within the excitation range of the dye. In a way similar to the one described
before, evanescent photons from the cladding are injected as bound modes in
the core and the homogeneous photons are leaked out. In a similar sensor, an
oxygen sensitive fluorescent coating was applied to a fiber having a
fluorescent core. The homogeneous photons from the coating sources excited
the fluorescent sources in the core [Lieberman et. al., 1988]. The result was a
100-fold increase in the efficiency of the sensor when compared with the
previous one. In both cases, the fluorescence intensity is quenched by oxygen

and its partial pressure could be determined [Cox et. al., 1985].

Christensen et. al. have used a FDTD (Finite Difference Time Domain)
analysis to determine the percentage of power that is guided in a single
direction in a planar waveguide with fluorescent sources outside the core

[Christensen et. al., 1989]. His approach differed from Marcuse's who derived
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an expression for the power efficiency of a-step profile fiber using the weakly
guiding approximation [Marcuse, 1988]. Marcuse has applied his results to the
sensor described by Lieberman et. al. [1990]. Agreement between theory and
experiment was within an order of magnitude for a single experimental date;

point. Further experimental work is required to verify the theory.

In this thesis we extend previous work done by Marcuse [1988] on the

efficiency of core light injection from sources in the cladding.

Assuming that the cladding sources are already excited, Marcuse computed
the fraction of the power that is trapped in one direction as bound modes in
the core of a weakly-guiding step-profile fiber. This fraction is the ratio of the
power that is injected into the core of the fiber as bound modes, Py to the
total power radiated by the sources, P,,4. He also assumed a fiber with
infinite cladding and treated it for both positively and negatively guiding
fibers, 1., >fcag and njaq > 1, Tespectively. Assuming each source as
being an infinitesimal electric current j with random phase and orientation,
he analysed two different distributions:

1) sources that are uniformly distributed in the cladding and

2) sources that are concentrated in the core-cladding boundary (thin

film) (Figure I-3).

In this extension, we treat only positively guiding fibers for the above source
distributions. We derive our formulas by using the exact solution of the fields

of the cylindrical optical fiber with an infinite cladding. Such an approach
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(a)

(b)

Figure I-3. Sources uniformly distributed in the cladding (bulk distribution)
(a) and sources distributed at the core/cladding interface (thin film

distribution) (b).
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allows us to account for arbitrary differences between n and 1 ,4-

core
Although the cladding sources also excite low loss leaky modes that may be
detected in short fibers [Marcuse, 1988], we have treated only the injection due
to the evanescent field. We are applying these results to design an atomic
oxygen optical fiber sensor which uses evanescent-wavecoupling. Such a
sensor would be part of a smart structure and could detect and monitor the

action of atomic oxygen on space structures. It could easily be deployed on

NASA's missions.

I-5 Conclusion

Since optical fibers were initially developed for communications purposes,
there had been a need to design fibers with low pulse dispersion. Weakly
guiding fibers seem to fulfill this need. This has led to the formulation and
widespread usage of the weakly guiding approximation which is simpler than
the exact case. In contrast, it was only recently that the potential of optical
fibers for sensing purposes was realized. In consequence, it was also realized
that weakly guiding fibers are not necessarily best suited for sensing purposes.
Although the exact field solution can explain sensor fibers a simpler and
different approach that can treat these fibers has to be formulated. The
possibility of formulation of a new, innovative and simpler approach can not
be discarded. It should allow a fair description of the properties of fiber
sensors in the same way that weakly guiding approximation is a good

approximation for communication fibers.



II. BOUND MODES OF A STEP PROFILE FIBER
II-1 Introduction

The system to be studied, the cylindrical optical fiber, consists basically of a
glass-rod of index of refraction 7., surrounded by a dielectric material of

index of refraction n.,q4 where
Neore” Melad: (II-1)

The region with index of refraction n ., is referred as the core of the fiber.
The outside region with index of refraction 7,4 is referred as cladding

(Figure II-1).

A cylindrical optical waveguide can support two kinds of modes: radiation
and bound modes. The total electromagnetic fields of the waveguide can be
expressed as a sum of these two modes. In ray theory, light beams that have
an incident angle smaller than the critical angle correspond to the radiation
field. Those are the refracted rays. On the other hand, electromagnetic fields
that propagate indefinitely inside the waveguide structure are expressed as
bound modes. In general, most of the bound mode energy propagates inside
the core of the fiber. The portion that penetrates into the cladding, the region

of lower index of refraction, is termed the evanescent field. As discussed

14
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air

cladding

(a) ®)

Figure II-1. Three layers cylindrical optical fiber with core radius 2 and
cladding radius b (a). Variation of the index of refraction n with the radius
r (b). For practical purposes the cladding radius b is assumed to be infinite.
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previously, there is no ray counterpart for the evanescent field. However, for
those fields that are not evanescent their geometrical counterpart are
represented by rays that are totally internally reflected, having an angle of

incidence greater than the critical angle (Figure I1-2).

Bound and radiation modes are excited by injecting electrofnagnetic energy
from sources into the fiber. Lasers, diodes and fluorescent molecules can be
used for this purpose.. As discussed in the previous chapter, we will be
concerned only with the excitation of an optical fiber due to fluorescent

sources distributed in the cladding.

Excited fluorescent sources distributed in the cladding of an optical fiber
generate radiation fields and can inject bound modes (Figure II-3). For sensing
purposes, bound modes are more important. They propagate indefinitely in
the core of the fiber and can be easily collected for analysis. In addition to that,
any perturbation to the trapped field can be used to get information on the
surroundings of the fiber. The bound modes excited by the sources in the fiber
cladding are closely related to the evanescent field. Without evanescent

fields, bound modes can not be excited from sources in the cladding.

It is the aim of this chapter to present a mathematical expression describing
the bound modes of a cylindrical optical fiber. We start by presenting a well-
known relationship between the transverse and longitudinal fields. We

proceed with the derivation of the vector wave equation and find the
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Propagation direction of
evanescent radiation 6 >0

¥

Figure II-2. Bound modes (rays) and their evanescent counterpart in an
optical fiber.
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—{@p radiation modes

» bound modes

] >9c
nj
nl>n2
7]

Dipole radiating source
. — 4=
/ \

Figure II-3. Sources in the cladding of an optical fiber can emit evanescent
wave. Some of the evanescent energy is trapped as forward and backward
propagating modes. However, in general, most of the it goes toward radiation
modes.
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solution of the longitudinal components bf the fields. From the previous
results we derive the transverse components of the fields. Using the
boundary conditions and an appropriate normalization, we find the
amplitude coefficients and the eigenvalue equations. We conclude the
chapter by displaying the fields and the eigenvalue equation of a weakly

guiding fiber.
I1-2 Relation Between Transverse and Longitudinal Fields

Propagation of light along non-absorbing optical waveguides in regions
sufficiently far from any source of excitation is most conveniently described
by a sum over the bound modes of the waveguide. Bound modes are
solutions of the source-free Maxwell equations. We assume an implicit time
dependence exp(-iwt) in the field vectors. The dielectric constant €(x,y,z)

can be written as a function of the index of refraction n(x,y,z),
€ =§£on?. (I1-2)
For nonmagnetic materials the magnetic permeability u is very nearly equal

to the free-space value ;. Under these conditions and using the rationalized

MKS units, the source-free Maxwell's equations are expressible in the form

VxE=iq/ 22k H (I1-3a)
&
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VxH= —iﬁ kn2E (II-3b)
1o

V.(n2E)=0 (11-3¢)

VH=0 (I-3d)

where k = 2n/A is the free-space circular wave number and A is the

wavelength of the light in free space.
The refractive index profile of the step index fiber doesn't vary with the
distance along the waveguide, i.e., it is independent of z. Such fibers are said

to be translationally invariant [Snyder et. al., 1983]. Its electric and magnetic

fields can be expressed as superposition of fields with the separable form

E (x,y,z,)=e (x,y ) expli pz) (I-4a)

H (x,y,z)=h (x,y ) expli B2) (I-4b)

where f is found from the boundary conditions.

It is useful to separate the fields in components parallel and transverse to the

fiber axis

E (x,y,2) = (e (ry ) +2ez (x,y ) expli p2) (I1-5a)
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H(xy,2) =(h (xy )+ Zh, (x,y)) expli B).

21

(II-5b)

Substituting equations II-5 in II-3 and separating the resulting equations into

transverse and longitudinal components, we get

e;= L (V,.e+ i (e Vi In n?) and
hz= -L Vt .ht.
B

Substituting (II-6a) in (II-6b) we get

A RN T
0

k22— pg?

Substituting (II-7) in (II-6a) we have

i Ho ~
e,= —; B V.e,-k — zxV.h,
2 2 &

kn"-p

(I1-6a)

(II-6b)

(IT-6¢)

(I1-6d)

(I1-7)

(I1-8)
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It can be seen from (I1-7) and (II-8) that the.transverse fields are a function of
the longitudinal fields only. Consequently if we can find the z-component of

the fields, we automatically have the whole solution.

I1-3 The Homogeneous Vector Wave Equations

In order to find the longitudinal components of the fields, we transform the
Maxwell equations, Equations (II-3), into a more convenient form. We will

carry out this derivation just for the H- field. The derivation for the E- field

is similar.

Using Equation (II-3b) we can write E in terms of H. Substituting this result

in Equation (II-3a) we get

VxH —x’H

(11-9)

For a step profile fiber with infinite cladding n is given by

Neore 0 <r<a
n= (I1-10)

Nelad A<T <o

where a is the core radius and r is the radial cylindrical coordinate. As it can
be seen from (II-10), the index of refraction is constant throughout the fiber

except at the core-cladding interface. Consequently, within the core and the
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cladding, Equation (II-9) and its E- field counterpart will satisfy the equations
22
Vx(VxH)=k%’H (II-11a)
22
Vx(VxE)=kn’E (I-11b)

respectively. Expanding the left hand side of Equations (II-11) and substituting
Equations (II-3¢) and (II-3d) in the expansion, we get

-2
V H=-k*n2H (I-11¢)

-2
V E=-k2n2E (II-11d)

We must emphasize that the operator in the left hand-side of the above

= 2
equations, V , is a vector operator, not to be confused with the scalar

2 :
Laplacian operator, V. In a curvilinear system of coordinates, the vector

operator couples the components of the fields this makes

—2 2
V 2V .

However, in the Cartesian system of coordinates,
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[Snyder et. al., 1983]. We should warn that Jackson [1975] does not make this

distinction in his Vector Formulas displayed inside the front cover. This

gives a false impression that the relationship V =V always holds.

It must be stated that Equations (II-11) do not hold at the interface but only
within the core and the cladding. If we want to know the field everywhere in
the fiber, including the interface, we have to impose the boundary conditions

of Maxwell's equations in Equations (II-11) [Snyder et. al., 1983].

Equations (II-11) are known as the Homogeneous Vector Wave Equations

(source-free).
11-4 Solution of the Longitudinal Fields

Since the fiber is cylindrically symmetric it is convenient to use a cylindrical
coordinate system to solve Equations (II-11). The two vector differential
equations obtained above can be broken down in six scalar differential
equations. Four of them involve the transverse components of the fields
which are coupled to each other in the equation. The other two involve the
z-components of the fields only. As discussed before we can specify all fields
in the fiber just by solving the longitudinal components. The equations that

are of interest to us are expressed below



I1. Bound Modes

2 2 -
de de Jde 2
Zz+l £+ 12 d +(k2n2-ﬂ)ez=0
or " or r 8¢2
82h oh 8211
2
z+l L L z +(k2n2-ﬁ)hz=0
2 r or 2
ar r a¢

(I1-12a)

(II-12b)

As it can be seen from above, the equation for h, has the same functional

form of e,. For this reason we can solve our problem by treating only one of

the equations. Defining new variables we can rewrite Equations (II-12) as

2 2
de de de
2’+% Z+ 12 Z+U2ez=0; 0<R<1

2 2
de, 10e, | de 2

Ll z
2 R 3R

+ -We,=0. 1<R< o

IR R” 347

where R is the normalized radius R = r/a,

U=a \/k zn&,,e—ﬁz and

W=a W/ﬂz- k2n3.q

It is also useful to define

(II-13a)

(II-13b)

(I1-13¢)

(II-13d)
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V= akvnde -nda=TUZ2+ W2 (11-13e)

The V-number defined above is a measure of the number of modes that
propagate in the fiber. The lower it is, the lesser the number of propagating
modes. On the other hand, the parameters U and W are a measure of how
close to cut-off a particular mode is (we will see later on that each mode has a
particular U and W values). Notice that their maximum value is V. A
mode that is close to cut-off, has a U (W) value close to V (zero). In the
same way, a mode that is further from cut-off, has a U (W) value close to

zero (V).

Equations (1I-13) can be separated into the equations

R2d2%F R dF , y2R2--1d’® _ 2. o<R<1 (1-14a)
F gr? F dRr cbdd)z

R2d?F ,R dF . w2R2=-1d?® _ 2, 1<R< o (II-14b)
F 4r? F drR D 4o’

where we have made ¢,=F(R)®(¢). By solving Equations (II-14) and
imposing the condition of continuity of the longitudinal components across

the interface, i.e., at R = 1 we finally find

] (U, R)f() b B J J(U,uR)

w7 o, ] .= v,,,—,mgv(d’); 0sR<1 (I1-15a)

e, =A
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Ky (WouR) Kv(WouR)
er=Avpy ——2 (), hy=B,, —2 o () 1<R< oo (I-15b)
R ) MO e B ST 8
where
cos (v ¢) - sin(v¢) even modes
fv(¢)= ; gv(¢)=
sin(v¢) cos (V ¢) odd modes

J,.ua, ) and K (W, ) are the Bessel function and the modified Bessel

function respectively.

The second subscripted index in A, U and W is consequence of further
boundary conditions. We will see later that by imposing continuity of the
tangential field components at the fiber interface we get an eigenvalue
equation for each mode v. The u index arises because of the possibility of
multiple roots in the eigenvalue equation. The double index notation is also

carried along to the propagation constant S.
II-5 Solution of the Transverse Fields
Now we can determine the transverse components of the fields. They are

found by substituting Equations (II-15) in (II-7) and (II-8). The final result is

written below
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C]]v 1(UV/1 )'C2]v+l(uv,p R)

Jo (Uy, 4)
Uy,u G K. l(wv,pR)+C2Kv+l(Wv,uR)

W, Ky (Wyu)

fulp) O<R<I

fv(9) ISR <eo

{ Cloa(Unp R+ Colyr(UvuR) ) gcrel

e = Iv (uV,#)
¢ uvu Cl v- 1(WV.I1R)-C2KV"1(WV’“R)gv((p) l1<R<eo
Wv“ KV (WV,}!)
Colvor(UiuR)-Calvr(UvuR) 0 gcpsr
I = }v (UV.#)
r vaCSKv I(WVFR)+C6KV+1(WV"“R)8V(Q)) 1€<R <o
va K, (Wv,y)
Calv-l(uv,uR)+C4]V”(u""‘R)fv((p) 0<Rsl
- Jv (Uv,p)
¢ Uv,u CsKv-l(Wv,uR)'C5KV+’(WV'“R)fV((p) 1 <R <oo
Wv,p. K, (wvr”)
where

v ;lo
=i Avy- A/ —kB,);
G 2all,, (ﬁv.u v, P
; [Ho
! A, + 1/ —kB );
2al,, (ﬁv.# i A
— Byy- 1/ Lkna A,);
ZaUV_,,(ﬁ CaC T

Cy=

Cs
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(11-16a)

(I-16b)

(II-16¢)

(IT-16d)
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Ca=—d__ B L Ao |-
4 5 uV.u (ﬂv,u vt Nére v,u,r

Co=—00> Byy- 4/ & i Avul;
5 24U, (ﬁv.u Vi y nc%ad V.u)

Ce = m (ﬁv,,, By, + J%knjad Aw) .

As discussed before, the components of the fields in the region R>1 is termed

the evanescent field.
The final solution reflects the existence of three kind of modes

1) Transverse Electric Modes (TE Modes), v=0
2) Transverse Magnetic Modes (TM Modes), v =0
3) Hybrid Modes (EH and HE Modes), v # 0.

TE Modes are modes whose ¢, components are null. TM Modes has a
longitudinal magnetic field &, equal to zero. Hybrid Modes have both
longitudinal electric and magnetic fields. They can be further classified in

terms of relative amounts of E, and H, components [Snitzer, 1961].
II-6 Coefficients of Amplitude

We can find the ratio of the coefficients of amplitude A,, and B,, by

applying the boundary condition of the transverse fields ¢ at the interface.
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Using the continuity of ey at R=1 we get

Avy _ kquuu WVZ.# 1/“0( 1 Iy (UV#) + 1 KV’(WV»"‘) (11-17a)
BV-I‘ Vﬂv,pVZ & uVﬂ IV(UVF) WV-# KV(WV-#)

Doing the same for the i, components we get

Bv,p kuvz,p w\12,,41 (ng— ]V( ) 71 (va))
= ore Tclad I-17b
= 1/ ( )

Avp vﬁv,qu Uy IV(uvu) Wvu Ky (Wv,)

The prime in the above equations represent a derivative with respect to the
argument. As seen from above, we can either use (II-17a) or (II-17b) in our
field solutions. As discussed by Snyder et. al. [1983], the amplitude A, could
be set equal to the unity. However, it is chosen for consistency with the weak-
guidance approximation (N & Meiaq)- Following Snyder's normalization

[Snyder et. al.,, 1983], we finally have

i) for TE Modes
e,=e,=he=0 (1I-18a)
ChMUowR) g ge
1 {Uo.o) (11-18b)
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\/Eﬁo'“h(uo“‘) 0<Rs<1

Mo k h(Uou)

,\/—_ﬁo“ K WO") |<R<oo
K1 Wﬂu)

i /8 Hou Jo(UouR) 0<R<1
h. = Ho ka ll(uo,u)

z -i QWO,“ KO(W()'“ R) ISR<°Q
Ho ka K](Wolp)
ii) for TM Modes
h,=hz=e¢=0
]_‘(_u.";’.‘_R_) 0<R <1
Ii(Ug )
e,= )
ncoreKl(WO,uR} 1 <R < oo
2 K, (W B
M clad 1(Wod
Uou Jo(UouR) 0<R<1
a B, ]1(u0,p)
€:z= 2
_lncore Wo,p KO(WO,[JR) 1<R <oo

Maaa “Pou KilWol
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(I1-18¢)

(I1-18d)

(I1-19a)

(II-19b)

(II-19¢)
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4/ 80k"“°"’](u"'”R) 0<R<1
Ho ﬂOu ]1( ll)

Al — £ o.uf) [ <R<o
Ho )BO;J l‘)

iii) for Hybrid Modes

] allv_](uv'uR)“‘a2]v+l(uv,llR)fv((p) 0<R<«l1
J,{Uy,,)
e =
’ ) uv,u alKV—I(WV,#R) azK"”(wV'uR)fv((p) I<R<oo
WV’# KV(WV,H)
. allv-l(u":/»‘R}-aZIV*l(uV'uR)gv(go) D<€R<1
_ ]v (uV}l)
€p = vaalKv 1(WvuR)+a2Kv+1(va )gv(q’) 1 <R <o
"Wy, K, (Wy, u)
iUy, Jv (Uvp )fv(w) 0<Rs<1
e.=| @Bvu Jv (Uv. )
=
-IUv,u (Wv,u )fv(q’) 1< R <o
a P,y KV(WV’“)
kn&, @)y (UvuR)-aal 1 (UnpR)
h Ho B Iy (uvu)
T kn&,i U, . asK,. 1(WvuR)+“6Kv+1(WV,I‘R)gv((p)
ﬁv,u WVI‘ Ky (va)
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(I1-19d)

(II-20a)

(I1-20b)

(I1-20¢)

]1<R<oe

(I1-20d)
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_/\/_fgkn&[g a3]"‘1(u":#R)+a4]V*1(uVr/‘R)fV(§D) 0<R<1

he = By, p Jv (Uy )
& kn§ UV’# asKv.l(wv,uR)‘a6Kv+1(WVI”R)fV((p) 1<R <o
Ho ﬂv'u Wy, u Ky (WV,#)
(1I-20e)
. UquZIV(uVﬂR)
-1 .@. 4 : gv(q)) OSRSI
- Vo ka ], (Uyu) (I1-20f)

re Uy, uF2 Ky (Wy, 4 R)

. & “Hvut2 By v, i

-1 = l]€R<oo
Ho ka Ky (Wy, ) 8v{9)

where

as_é_ %( ore)z. 6 = I; %(:zt])re)z;
(UVJ‘ WV,#)z by + ndad/ncore)z 2, F=
v ’ Uquv,,)bl +b2
l]v 1 uv ;1) ]v+1(uv u)}
2Uvu\ I Uy Jv (U

k=

by =

and

Our problem will have solution only if the inverse of (II-17b) is equal to
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(1I-17a). This equality leads us to the eigenvalue equation and is discussed in

the next section.
11-7 The Eigenvalue Equations

Right now we still do not know how to find the eigenvalues 8, , U, , and
W, . For the TM and TE modes they can be found in a straightforward way
just by imposing continuity of the z-components of the fields at the interface
(R=1). For the hybri(;l modes the eigenvalue equation is found from
Equations (II-17). The resulting equations are transcendental in their
arguments and are solved through numerical or graphical techniques. These
equations, referred as the eigenvalue equations are displayed below for each

mode [Snyder et. al., 1983; Snitzer, 1961].

i) TE Modes (continuity of h;)

Jo(Uo, 4 Ko(WouR)
u +W, e Ty
' ll(uo,ﬂ) ’ K](Wo,u) (II~21a)

u ]O(UO,/,l)+w N core KO(WOp) -
Ok T (Uq ) °"‘,,§ad Ki(Wo, (I1-21b)

iii) Hybrid Modes (Equations (I1-17))
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( ]V,(uvl#) + n(ﬁad ) KV,(WV"‘) )X
Uy, ulv (UV,#) nére Wy, u Ky (Wv,u)

’ ’ 2
( ]v (uV’u) ¥ KV (WV:”) )= ( vﬂva#) ( k 4 ) (H'21C)
UV:I‘ ]V (uv: ﬂ) WV:“ KV (WV: “) kncore uVr/‘ WV:II

Equations (II-21) can be solved numerically with the help of Equations (II-13c),
(II-13d) and (II-13e).

It was pointed out by Snitzer [1961] that Equation (II-21c) is quadratic in

]v’(uv,;t) )
uVrﬂ]V (u",#)

(IT-22)

Treating (II-22) as an independent variable, Equation (II-21c) can be broken
down in two sets of solutions; one of them corresponds to the HE modes and
the other to the EH modes. Their form is rather complicated and will not be

displayed here.

I1-8 Weakly Guiding Fibers

By definition, a weakly guiding fiber is a fiber which has an index of refraction
of the core approximately equal to the index of refraction of the cladding

[Snyder, 1983; Marcuse, 1974]

kn  &=kn_ . 4=B. (I1-22)
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Such fiber is almost similar to an unbound uniform medium. Being such it is
a good approximation to assume that its fields are quasi Transverse
Electromagnetic, quasi TEM, field. For this reason we use the quasi TEM

approximation or
e,~h,=~0 (I1-23)

to solve the wave equation for the transverse fields. Using Equations (1I-22)
and (II-23) in the vector wave equation and solving it for the Cartesian
components of the fields, we find that the transverse fields become solutions
of the so called scalar wave equation. We want the results of the weakly
guiding fiber only for posterior comparison with the exact solution. For this

reason, we will limit ourselves to display them here [Snyder et. al., 1983]

i) HEMl'pModes (v=4+1, A20)

X -¥ sin A¢ JFA(R) ;
e =f {i cos A¢ yAsm ¢) 2(R) even (11-242)
\ (Xsin 1 + ¥ cos 29 Fa(R) ; odd
ii) Transverse Modes (v= 0, A=1)
etan = [ (xf"s ¢+ysin ¢ )R (R) M (I-24b)
\ (x sing -y cos¢)F1(R) ; TE

iii) EH, ,; , Modes (v=4-1, A>1)
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eun = f (% cos Ap +y sin A¢ )FA(R) ; even (1240
\ (’isinMJ - ¥ cos A¢ JFa(R) ; odd
where
L (uj”“ R) ; 0<Rs1
AT
K2 (V,V\i'u R) ; 1<R<oe
Kl(wl,#)

The longitudinal z-components are almost zero and will not be displayed

here. The eigenvalue equation for the weakly guiding fiber is

~ ],1+1 (ﬁ/\,p) _ W KAH (Wl,u)

i -
H i Ka (W)

=~ (I1-25)
Ja (u /Lu)

where
V=Y a‘fy + lep .

The tilde in the eigenvalues was introduced in order to distinguish between
the eigenvalues of the exact solution and the eigenvalues of the weakly

guiding. The transverse magnetic fields can be found from

tan =" core T ZX€y,n
V I, . (II-26)



1. POWER INJECTION DUE
TO SOURCES DISTRIBUTION

111-1 Introduction

Fluorescent sources distributed in the cladding radiate incoherent light and
can be modeled as radiating current dipoles with random phase and
" orientation [Christensen et. al., 1989; Snitzer, 1961; Marcuse, 1988; 1975]. As
stated before, the total field injected into the core by these sources can be
expressed as a sum over the bound modes. Each mode having an amplitude

coefficient, ¢, , OT

E = ECV‘H_ €y - (HI'].)

V1

Since the total field is excited by the current distribution j in the cladding, it
is natural to expect that the amplitude coefficients, ¢, , are related to j.
Before deriving such a relationship, we will introduce a very important
theorem: the reciprocity theorem. With the help of Maxwell's Equations and
the previous theorem, the amplitude coefficient follows [Snyder et. al., 1983].
Next we present a general equation for the power effi‘ciency of a cylindrical
fiber with sources distributed in its cladding [Marcuse, 1988; 1975]. Finally, we

derive the power efficiency of a cylindrical optical fiber whose fields obey

38
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Equations (II-18) thru (II-20) and compare pur results to the weakly guiding
results of Marcuse [1988]. Our expressions are derived for the positively

guiding fiber for two different distributions:

1) sources uniformly distributed in the cladding and

2) thin film sources distribution.

For further applications of the reciprocity theorem, the reader should refer to

Snyder et. al. [1983].
III-2 The Reciprocity Theorem (Conjugated Form)

The conjugated form of the Reciprocity Theorem can be derived by defining a

vector function Fc
F=E xH*+E*xH (I1-2)

where * denotes complex conjugated. The unbarred fields satisfy Maxwell

Equations with density current j or [Snyder et. al., 1983]

VxE=iy/ 2k H (IT1-3a)
£

VxH=j—i4/;%k n2E (I0-3b)

The barred fields satisfy the conjugated form of those equations or



III. Power Injection 40

VxE*=-in/ R kH" (I11-42)
&

Vx}_1‘=f‘+i\/gk(ﬁ')zf‘. (IT1-4b)
Using the identity for the divergence of two vectors we find
VFE.=H-(VxE)-E(VxH)-E-(vxH*)+H(VxE*). @5
Substituting (III-4) in (III-5) we get
VE.=-(E*j+E J*)- i{%k () nJE.E* (I1-6)

Applying the two-dimensional form of the divergence theorem to Equation

(I1-6) we have

[V.chs =-a—j F. zdS + §Fc.ﬁdl . (I11-7)
s 0z Js I

If we take S as the infinity cross-section of the cylindrical fibre, S, the line
integral then has to be taken along the circle r—es, where r is the cylindrical
radius. Far from the core/cladding boundary, the amplitude of the fields of
the bound modes fall-off exponentially consequently, at r—ee, the line

integral is null. Equation (I[I-7) reduces to [Snyder et. al., 1983]
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f V.F.dS =i[ F. zdS . (111-8)
Sw 0z Js.

Equation (III-8) is the conjugated form of the reciprocity theorem. It relates the
fields of two different fibers with indices of refraction n and n and current

distribution j and j respectively.
III-3 Excitation by Current Sources

As it was-stated before, the reciprocity theorem relates the fields of two
different fibers. By knowing the fields of one fiber we may determine the
fields in another. In our case, we would like to determine the forward
propagating fields, E and H of a step profile fiber with sources distributed in
it (Figure III-1). This fiber has a determined current distribution j and an
index profile n. We choose a reference fiber with barred fields E and H, a
current distribution j = 0 and an index profile # = n. Such reference fiber has
a field solution given by Equations (II-18), (II-19) and (II-20) [Snyder et. al.

1983]. Written in another way, we have
E =ey, exp {iﬂv,,, z); H = hyuexp (iﬁv,# z). (O1-9)

With the results above we can rewrite (III-6) and substitute it in (III-8). Doing

that we obtain
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core

A\ - cladding

Figure I1I-1. Sources in the cladding can be treated as current dipole vectors
(arrows). Fluorescent molecules can be modeled as dipoles with random

phase and orientation.
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9 F. zdS =-f ety - f exp (- iﬁwz)dS. (II-10)
0z Js_ 5.

The expansion coefficient in Equation (III-1) is a function of z in the region
Zj<z<z; and constant outside it. Substituting Equations (III-1) and (III-2)

into Equation (II1-10) and using the orthogonality condition

V#a

f (evuxhag). ’z‘ds=f (evuxhap).2dS =0; or (I-11)
S- S-
K=p
we find
deyy (z) , ,
= =-4le ] ey . j exp (-zﬁm z) ds (IO1-12)
where P, is the normalization constant given by
Pyy= %U (evuxhyy). ids’ : (I11-13)
S-

Finally integrating Equation (IlI-12) we get
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0,

z
1 . s _
cyulz)= - wv.“f fs_e"#'] exp(-zﬁv‘uz)dez
%

1

T ” j;me v . exp(-iﬁw z) dv

which is a result obtained by Snyder et. al. [1983].

zZz2

(I11-14)

In any experiment, we should expect to collect the light in a region far away

from the sources. Consequently, in the above result, we are specifically

interested in the region z2z,. A slightly different expression can be obtained

for backward propagating modes.

I11-4 Power Injected into Bound Modes

The power carried by each mode can be expressed in terms of the amplitude

and the normalization coefficients and written as

leviu|? Prg

(M1-15)
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Taking the sum over all modes of the previbus expression, we get the total

power due to the bound modes, P____[Snyder et. al., 1983; Marcuse, 1988]

Peore = E ICv,;JZPV,p (II1-16)
v, H

Since there are many sources distributed in the cladding and they have

random phase and orientation, we can rewrite Equation (II-16) as

(PCOFG)= E de,ulz)pv,u (II1-17)
v, i

’

which is the ensemble average of the total power of the field [Marcuse, 1988].

Equations (I1I-14) and (III-17) provide some clues on the characteristics of the
amplitude of the injected modes. For instance, if j has only a z-component,
the TE modes will not propagate. In the same way, if the z-component of the
electric field of a particular mode is small, so will be the contribution of this
mode to P_,, . (the TM; mode of the anti-symmetric slab is a good example
[Christensen et. al., 1989]). On the other hand, we could also choose the
direction of j with respect to e,y in such a way to maximize P_., However,
a more realistic model for fluorescent sources is a random distribution where

there is no preferred direction of orientation[Marcuse, 1988; Christensen et.
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al., 1989]. In this case, we should expect every ‘mode to be excited.

As discussed before we should consider only that portion of the amplitude

coefficient which is at the region z2z,. Rewriting it we have

CV,u ] Z—PI—I ev"u . j exp (‘iﬁy’“ Z} dV. (m'18)
v source

The ensemble average of the square of the modulus of the amplitude

coefficient follows

c ep(r).j (r) dV] evulr').je(r') dV’). (II-19)
q ‘42) 16P <I source g ' V furce o >

Rearranging Equation (III-19), we get

fevaf?) =

f ety (r).(i (r)j* (r ) eyy(r)dv dV'> . (I1-20)
16P Veouree

The quantity between parenthesis is a tensor of second rank. It can be

represented by the matrix

Qf A) = j ev'.u(r).(i (r) j* (r) .evulr)dV dV'>. (I1-21)
lspw Vi

Equation (II-20) can be further expressed as
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leval}) = —15 H equ(r). (7 (7 * (") v (r') AV aV" (-22)
16P2, )}y

Equation (III-22) was previously obtained by Marcuse [1975]. The term

(7 (1) j* (r)

is the ensemble average of the current density tensor over many similar
systems [Marcuse, 1988]. The current source is composed of many randomly
phased and oriented dipoles. Being randomly phased and oriented, the
components of j are uncorrelated. This makes the off-diagonal terms of the

matrix null or

(jx(f)jx‘(f') ) 0 0
(]' (r)j* (r '))= 0 <le ) jy (r ')> 0 . (II1-23a)
0 o (@)oo

In the same way, similar components of j are also uncorrelated at different
positions or, j;(r) and j;(r") (i = x,y and z), are uncorrelated at r#r’.

This makes the diagonal terms proportional to the Dirac delta function or
(ji (r)ji* (r ')>°< i P Sr-r);i=xy2 . (IT1-23b)

Since there is no preferred direction of orientation, each component of j

contribute the same amount to our result or
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lid =il =l - (I11-23¢)

This makes all diagonal terms in the matrix equal to each other. So we can
assume Equation (I1I-23a) to be proportional to the unitary tensor | . Thus we

can write it as [Marcuse, 1975; 1988]
(1 (r)j*(r'))=S 16(r -1") . (I1-23d)

Where § is the source strength. Substituting Equation (III-23d) into Equation
(I11-22) we get [Marcuse, 1975; 1988]

i

fevif) = ﬁ)_z_ J S levu(r Pdv (I1-24)
V,[.l source

which, in conjunction with Equation (IT1I-17), can be used to find the power

injected into bound modes

Peore = 216113‘,,# f S levul(r 12 dv . (II-25)

Equation (III-24) can also be used to find the ensemble average of the

amplitude coefficient of a continuum set of modes.
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III-5 Total Power Radiated

In this section we will derive an expression for the total power radiated by the
sources in the cladding. The sources are assumed to be already excited. They
are distributed uniformly in the cladding between the inner radius rn and

<b. The

the outer radius r_,, (Figure III-2) in such a way that a<r; <r . .<

excited radiation is incoherent and its associated fields can be represented by
an integral over a continuum of plane-wave modes. They can be expressed as

[Marcuse, 1975; 1974)

204,P ~
Exo=:b- A/ =52 exp(-ikye 1) ko (IT-26a)
2r Beo '
2041, P kxoxe
= _I_ KO o K0 Ko _
Hy o 55 _,on- exp (-ikx,g 1) T (I-26b)

where @ is the angular frequency, P, s is the mode normalization, &, _ is
the unit vector that determine the direction of E x o Kx o 15 the propagation
vector and x, 6 and S are the x, y and z-components of the propagation

vector respectively.

The total power radiated is written as an integral over the continuum of
modes [Marcuse, 1975; 1974]. Its form is similar to its discrete counterpart,

Equation (ITI-17), and can be expressed as
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Figure III-2. Sources uniformly distributed between radius r;; and 7,

(aSr;,< Toue <b).
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Pog=2 j f Qc ( x,o]Z)P xodxio (111-27)

oo

where dc(x‘,cr]z) is the ensemble average of the square of the modulus of the

amplitude coefficient of the excited modes. It is given by [Marcuse, 1975]

fe (x, 0P = —L f S |Exo(r dv. (II1-28)
16P26 Jy....

The factor of 2 in Equation (I1I-27) accounts for two possible polarizations of
the transverse electromagnetic wave (TEM) [Jackson, 1975; Marcuse, 1975].
The z-component of the propagation constant is a function of the other

components or [Marcuse, 1975]
B=Vk2n2- 2. o2 (I11-29)

where k is the circular wave-number of the free-space excited radiation and

n is the index of refraction of the cladding material.

Substituting (III-26a) in (III-28) and assuming a cylindrical distribution of

sources with inner radius r;, and outer radius r_ ,, we get

out

Profe (ko) = =22 S 1 (2, -r2). (III-30)
327‘2 ﬁx,o-
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In the above formula, L, is the length of the fiber along which the fluorescent

sources are distributed.

We can find the total power radiated by substituting Equation (I11-30) in

(I11-27) or

Py =251 n(r2, -2 1 dxdo. (I11-31)
3272 Bx.o

Equation (III-31) can be easily solved if we express the components of the
propagation vector in a spherical coordinate system. In this system the

components are expressed as
x=nksin@ cos¢, o=nksinfsing, By o=nkcosb (II1-32a)
dxdo=(nkf cosfsinfd@d¢. (11I-32b)

Substituting Equations (III-32) into (III-31) we finally get [Marcuse, 1975; 1988]

Wi, 2 2
Prag=—1kSL (i) (II1-33)

Using Equations (III-33) and (I1-25) and writing the angular frequency in

terms of the propagation constant, we find the power efficiency
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rad 4( T out r cladk L

ZP f levalr ’l dv (III-34)

where the terms inside the sum are due to the bound modes.

Notice that the above result is independent of the cladding radius b. This
occurs because of the infinite cladding assumption used in the derivation of
the fields in Chapter II. However, later on for the bulk distribution, we will
make r, =b. Notice that this does not mean that the power efficiency is a
function of the cladding radius b but a function of the outer radius of the

source distribution.
III-6 Power Efficiency

For the exact case, the integral in Equation (III-34) is different for each mode.
They involve the integration of the product of the normalized radius by the
square of the Bessel K, function or Ran(Wv,uR) which is tabulated. The
normalizations follow from Snyder et. al. [1983] whereas Equations (III-35a),

(ITI-36a) and (III-37a) are the results of this work.

i) TEO, u modes

f leof AV = —ZL8Z (R 2K (Wo,u Rour] - REK: (Woy Ri)  (I1-352)
Vaources Ki#(Wo,u)
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- m ﬁo;; |J1(uo.u lKl(WO#)'
V ]] UO#) K12(W041) (1I1-35b)

7ra2 59_ ﬁo,,; V2 KO(WO,;L)KZ(WO,;A)

2 k 2 2 (III-35¢)
Ho uO,p K 1 (W )

ii) TMO' u modes

j leO ;‘42 dV = J.QT_Q___Z[LL_(RO“‘ lKl WO;t Routl RmIKl WOu le +
Vsources

clad Kl (WO I‘)
2
WO, 2
+ ) 2# (Rout K (WOpRout le WOyRm)l) (111-362)
a ﬁo,p
2 2
p _aln_ & k"core lll(uo,u)l_ N core VKI(WO.M)
ou — - ] _
g V' 1o 280, \1H(UG,) noaa Ki(Wou | T 36b)
2
& V2 N core
= _ 2 X
o 2kﬁ0,u " ad
2 2 2 2
-1 anore ﬁO,ua KO(WO,;&)K2(WO,;1) . zncorew K (Wro,u)
2 2 2 2 K{(Woyu (I11-36¢)

Naaa Uy Ki(Wou M dad U

iii) EH and HE modes (v > 0)
vl V.l
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2
L
f (e +leoft +le)dv = Eiml
2K Wo)

—'{ out W ;lRout) in wv,,_[Rin)l +
2 2 2
2 (Rout v+1( vuRout) v+1(wv,uRin)|}+
W
V.1
2, 2
out W
AW o] 5 bl (I1-372)
v,Uu v,
P __”aZ 80 kniore aIaBIIV-l(uv,u)l+a2a4 Jv +1(Uv,u)l
v, '\/ - -
H, 2ﬂv,u ]f(uv,p)
2
) UV,# aIaSIKV-l(wv,y) +a116,Kv +1 Wv,;z)l
2 -
vt K, ( w,.) (II1-37b)
= KI(A) Kl+ I‘A)
s PR
Ji4) JialA)
All=
e TATR A

where [ is an integer and R, and R;, are the normalized outer and inner

radius of the fluorescent distribution given by r_ ,/a and r.n/ @ respectively.

They obey the inequality 1sR;;<R, Using the eigenvalue equation of the
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exact solution of the TE and TM modes and the recurrence relationship of the
Bessel function, we can express the ratios ] (U, )/], (U, ) and
.y, /],y ) in terms of K (W, )/K, (W) and
KW, )/K, (W) respectively (see Marcuse [1974], page 68 for a similar
derivation for the weakly guiding approximation). Substituting this result in
Equations (III-35b) and (III-36b) we get Equations (III-35c) and (III-36¢)
respectively. The equation of the power efficiency must take into account the
degeneracy of the modes. Consequently, the final equation for the hybrid

modes must be multipliea by two, odd and even modes.

For the weakly guiding case the normalization and the integral of Equation
(I11-34) are the same for every mode. As before, the integral below can be
determined in a way similar to the one above. Also, Equation (III-38a) is the
result of this work. In the equations below we have used the expressions of

the weakly guiding fields in Equations (I-24).

I leaf dV = ""Zzu'l,-_%_.L—(Rozut |K>.(Wa,y Rout] - R& |KX(WA,uRin1) (IT1-38a)
Vsource K),(wl.u

2 2 e 7y3 -
p. = ma M g & V KA-l(W,Lu)KM(WA,u) (11-38b)
Ap 2 ", -2

u},'p K;{WA’#)

where
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/ 1 for TM and TE modes
A= v-1 for HE modes
\ v + 1 for EH modes

We should stress the fact that the results of Equations (I1I-35a), (ITI-36a), (III-
37a) and (III-38a) are valid for the general cylindrical source distribution
depicted in Figure (III-2) assuming that the indices of refraction of the
cladding and fluorescent sources are similar. Such assumption is necessary in
order to avoid further complication in the expressions of the fields which
arises whenever the fiber has more than two different indices of refraction
(finite cladding). The fields solution for this fiber [Kuhn, 1974 and references
therein] is helpful but will not be considered here. This assumption, that the
fluorescent sources have to have an index of refraction similar to the cladding
one, becomes unnecessary whenever the source distribution is either a thin
film (r,,,=r,,+6, 6 small) or a bulk distribution (roue=b). In the first case,
the index of refraction of the thin film can be neglected because of its small
thickness. In the second case, the cladding is completely filled with the
fluorescent sources which makes its index of refraction equal to the index of

the fluorescent sources.

Notice that the power efficiency of a weakly guiding fiber is dependent on
only one index of refraction. As stated before, Equations (III-35) thru (I11I-38)
are independent of the cladding radius, b, because of the infinite cladding
assumption in the weakly guiding and exact solutions. Due to two distinct

polarizations and the existence of odd and even modes, Equation (III-38a)



I11. Power Injection 58

should be multiplied by two for 1=0 and by four for A>0.

Substituting A=1 (TE/TM modes) in Equation (I11-38a) and having in mind
that wo,u—fﬁw when n_,,&f.q, We notice that Equation (III-35a) is
already reduced to the weakly guiding case. Equations (I11-35¢), (I1I-36a) and

(I11-36¢) can also be reduced by using the weakly guiding approximation

p= kncore"'knclad

For simplicity we will not write down the expression for the power efficiency.

We will do so in the next sections. There, we will find the power efficiency for
two particular distributions of sources: the bulk distribution and the thin

film. Table (I1I-1) summarizes the results obtained in this Section.
I11-7 Power Efficiency of a Bulk Distribution of Sources

An optical fiber with a bulk distribution of fluorescent sources is illustrated in
Figure (I-3a). It consists of sources uniformly distributed in the cladding, from
the core/cladding to the cladding/third medium boundaries. It can be
exemplified, but is not restricted to, a bare fiber core coated with a polymer
which has fluorescent molecules dissolved in it, the so called optical fiber
distributed sensor [Lieberman et. al.,, 1990; 1988; Blyler et. al., 1989]. If the
radius of the cladding is big enough, Equations (I11-35) thru (III-37) can be used

to model it.
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Choosing a fiber that has a cladding radius b, Equations (II1-35) thru (I1I-37)
can be rewritten by making, r, =a and 7out=b- This makes R, =1.0 and
R,,=b/a. A nice simplification arises when we make b very large, i.e, by
substituting r,,=b—e and R_ ,—e in Equations (III-35a), (ITI-36a), (111-37a)
and (III-38a) we get

f leo, ff AV = I 1(Wo,u ) (IT1-39)

Klz( 0#

wi,
K1 (Wo ] + Z [Ko(Wo,u )
azﬂo,u

(II1-40)

f leO ‘42 dv = - nch_'g gLaz
ne lad K‘ (WO #)

mLa2l}, (af Ky -1(Wyu) + af Ky 1 (W) . K, (wv,ﬂ])

J’V.a.,u Iev’dz av=- sz(wv,ui

W2, 28,2, a2
(II1-41)
f lea 2 dV =- —@!lel(wg o) (1-42)
Veource Ka, ( Ay)

respectively. At infinite, the determinant IK,(A)I decays faster than R_ ,

For this reason, all terms containing R, vanish in the limit R i

Substituting Equations (I1I-35b), (III-36b), (III-37b), (I11-38b) and (II1-39) thru
(III-42) into Equation (III-34), we get the power efficiency
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TABLE III-1
MODES j lev,d? dV ASSUMPTIONS
Viources
TE Equation (III-35a)
Exact Solution ™ Equation (I1I-36a) AandB
Hybrid Equation (II-37a)
TE,
Weakly guiding T™ and Equation (IT1-38a) A thru C
Hybrid

Summary equations for the integral of the square of the electric field over the
volume of a cylindrical distribution of sources. Inner and outer radial limits
of the distribution are given by r, and r , (see Figure III-2). R;, and R,
are the normalized inner and outer radius and are given by rin/a and

7,/ @ respectively.

Assumptions: A. Infinite cladding radius in the fields solutions (b—<e).
B. Index of refraction of the source material similar
to index of refraction of the cladding (n ;&M c1aa)-

C. Weakly guiding approximation (Megr&Melaa)-
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§ 2
Pcore - 1 UO,#,KII
Prad [1e 2V Z(bz' a ) Metag k ﬂO.u KO(WO.u) KZ(WO.u) (I43a)

u

W 2
Z ﬁou IK1,+ K
Pcore M core a ﬁ O,u
P d It™ 2 35 2
r 2 R dad K (W ) . ncore IK1|
]1 uOu) nclad K (WOu)
(01-43b)
P ore - 1 y
EH 2 2 3

Prad HE (b '“2) M cord? clad K (I1-43c)

2 2
Kv-l + a2 Kv+1

2 |4
ﬂv,p uv,y W 2 -+ 2 5
vt 2B, ,4

2
v,u KjW ”) agi, Jv-l tagp, Jv+lr } uv,u 3 Kv-l tafe Kv+1-
v, 2
G Wi klwy
~ 2
U)_’#JK,\I

P core 1 E
= 4-26
P_ . |weakly 2 22 2 ( 0.4

Au

KA—I (Wﬂ,u) K/1+1 (WA,;L)
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(111-43d).

For simplicity, we have dropped the arguments of K, and J,. Although the
power efficiency of the EH and HE modes have the same form, their
eigenvalues are different. Equations (IlI-43a) thru (Il1-43c¢) are the result of this
work. However, Equation (III-43d) is essentially similar to Formula (8) of
Marcuse [1988]. As discussed before, we had to multiply the original result of
Equation (I1I-43¢) by two in order to account for both odd and even modes.
Finally the total power efficiency is given by the sum

P Pre P
+ + +

P core core

p

core

P o= (IT1-44)

alE Pmal™ PrdloE  Prd|en

We should stress that Equations (I11-43) base on at least two approximations:

1) the infinite cladding approximation, which was introduced in the
derivation of the fields in Chapter II and
2) the infinite sources outer radius approximation introduced in

Equations (III-39) thru (I11-42).

As discussed before, the first approximation results in expressions for the
fields which are independent of the cladding radius b. It also results in a cut-
off frequency equal to zero for the fundamental mode. Although the infinite
cladding assumption is widely used, it is the finiteness of the cladding that

imposes a non-zero cut-off frequency for the fundamental mode [Black et. al,
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1986 and references therein]'.

For a few modes, the second approximation leads to a peak-discontinuity near
their cut-off frequency in the power efficiency diagram. Such behavior is
more evident at low V-numbers. However, at high V-numbers, the large
number of modes tends to smooth out the whole distribution of power
efficiency. As a consequence a sharp increase in the power efficiency near cut-
off becomes less perceptible. Instead, by using Equations (III-35a), (III-36a) and
(III-37a) we avoid this di'scontinuity in the power efficiency curve. Tables (III-

2) and (III-3) summarizes the results of this Section.

In conclusion, the power efficiency of a bulk distribution of sources can be

expressed in the following functional form
Peff = Peff(a' rout=b’ Meore Melad/ k). (HI-45)

We will show that the number of parameters required for the power

efficiency of a thin film distribution will be reduced.
III-8 Power Efficiency of a Thin Film Distribution of Sources

An optical fiber with a thin film distribution of fluorescent sources is
illustrated in Figure (I-3b). It consists of a thin layer of sources concentrated at
a specific distance from the center of the fiber in the cladding region. It can be

represented by, but is not restricted to, a bare fiber core coated with a thin film.
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TABLE III-2
MODES I lev,? dV ASSUMPTIONS
Veources
TE Equation (ITI-39)
Exact Solution ™ Equation (II1-40) A and B
Hybrid Equation (II41)
TE,
Weakly guiding TM and Equation (IT1-42) A thru C
Hybrid

Summary equations for the integral of the square of the electric field over the
volume of a bulk distribution of sources. In this case, R, =1.0, r; =4 and r

and R ,,—>°. Also the source material is the cladding itself, i.e.,

nsourcé':nclad'

Assumptions: A. Infinite cladding radius in the field solutions (b—>e0).
B. Infinite outer radius of the source distribution
(Tou™)-

C. Weakly guiding approximation (n_, &n clad):
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TABLE II11-3
MODES Pt Prd ASSUMPTIONS
TE Equation (I1I-43a)
Exact Solution ™ Equation (I1I-43b) A and B
Hybrid Equation (II-43¢)
TE,
Weakly guiding ™™ and Equation (ITI-43d) A thru C
Hybrid

Summary equations for the power efficiency of a bulk distribution of sources.

The corresponding Equations are obtained by substituting Equations (III-39)
thru (III-42) and Equations (III-35b), (I1I-36b), (III-37b) and (ITI-38b) into

Equation (III-34). In this case the source material is the cladding itself, i.e.,

MsourcEMelag- EQuation (IlI-43d) is similar to Equation (8) of Marcuse [1988].

Assumptions: A. Infinite cladding radius in the field solutions (b—o).

B. Infinite outer radius of the source distribution

(7oue—) in Equations (111-39) thru (III-42).

C. Weakly guiding approximation (n

coreznclad )
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In this case, the air itself acts as an infinite radius cladding.

The power efficiency of a thin film can be obtained by writing 7, in terms of

r.. where r =§ is the layer thickness of the film. For a thin film, the

in out™Tin
thickness & has to be much lesser than a/W,, . Substituting
R,,=R,,+&/4 into Equations (II-35a), (II-36a), (I1-37a) and (I-38a) we can
find their corresponding thin-film expressions. These equations are a
function of the determinant of K,(AR,,) which can be found by expanding

it in terms of powers of 6. The first order approximation for the above

determinant is given by

IK; (A Rou] =[Ki (A Rinl + A8/a ﬂ%‘%_’%‘i‘l F o (III-46)

Again, using the first order approximation in d for R, and substituting
Equation (III-46) into Equations (III-35a), (I-36a), (I11-37a) and (III-38a) for the

thin film case, we get the results below

i) TEO’ u modes

6 nlaRn d ]Kl (WO,“ Rin]
eq 2 dV = ————| Rin W,
Iv.,.,_l o KE(Wo )\ “ 7 d (WouRin)

+2|K; (Wou Rin)| (II-472)

ii) TM, , modes
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4 ; d K, ( Wou R,
f Ieo’#lz dV = Neore -‘SZLL“_Rm_( Rin oy I 1 ( 0. Rin ] N
Vaourer ndaa Ki*(Wou) d ( WouRin )

2

WO,;J Rin R W, d lKo( Wo’# Rin]
2 in7Y0u d ( Wo Rin)

aZﬁO’u i

+2IK1(WO,uRin1+

+2[Ko( Wou Rin ]) )

(II-47b)

iii) EH, , and HE,, modes (v > 0)

2 IR
I e dV = anuzv_,l LRin

2aa12 d IKV -1 (WV.” Rin]
( RinW 2K, . .
( Wv%y G d (WV,uRin) + I v 1(WV./1 Rxn’ +

+2aa22 ( RinWo d IKV +1 (wv.u Rin]
w2, d (Wy,uRin)

d IKV(W Rin)
1 ( Ri =t 2 . .
+“ﬁ3.u nWV.# d (WVvI-‘Rin) + |Kv(wv,;4 R‘"l)) (II1-47¢)

+2[Ky 1 (Wyy Rin]) +

iv) weakly guiding

RinWi '+ 2[Ka (Way Rin ) (IM-47d)

2 4V = or aLRj,
A-, L
fvmmle ”l d (WA,uRin)

( —  d[Ka(Wau Rin)
K%(WM‘)

which are also a first order approximation in 6.

Neglecting the second higher order terms in § of Equation (III-33) we get

owu,aR

Pras —— Ny kSL (I1-48)
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Notice that Equations (III-47) and (II1-48) are all linear in 8. Consequently, the
result of P, is independent of this parameter. If we substitute these
expressions into Equation (I1I-34), we get the power efficiency of a thin film
located anywhere in the cladding. However, of particular interest, is the
optical fiber which has a thin film located in the core/cladding boundary, i.e.,
R,,=1.0. It is easier to make such fiber and it is also the one that has the
highest power efficiency. Equations (I11-47) and (111-48) can be easily reduced to

this case.

Using Equations (111-48) and (III-25) and substituting R, =1.0 in it, we get the

power efficiency of a thin film distribution at the core/cladding interface

A/ Eo;
Peore _ o 1iml L _J__j levff dV (I1-49)

Prad 8a L nclad k2 60 5 PV'”'

v,

Although not published, Equation (I11-49) was obtained previously by

Marcuse.

The expresssion

d lKI (WV-I‘] +2

W
Yod Wy

K (W)
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can be simplified if we expand it and use the recurrence relationship to
eliminate the highest and lowest order terms of the Bessel function. The

arithmethic is very involved. The final result is

d IG (Wyu] |

W
YETTAW, . Wy

+2[K (W) =2K2(W,,). (II-50)

Substituting Equation (III-50) into Equations (IT-47) we get

i) TEO' u modes

f leof AV = 2maLs (LI-51a)
Vioure
if) TM, , modes

4 W2
f Ieo'“ll dV = Hcore 2267rla Klz(wo,y) 0.u KO (WO #) (I-51b)
v, nc“lad K1 (WO.#) azﬁOu

iii) EH and HE modes (v > 0)
Vil vl

SrU 2, L
f kv,p{z dV = ‘—:"V'L'-x
Vaouree Ko (W)
2 2
2aa; 2aa, 2
2 KWl == K u (W) +—K (W) (I-51c)
V.1 WV-# aﬂ H
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iv) weakly guiding
j lea,f dV = 2maléd (10-51d)
Viource

Remember that, for the thin-film, the & in the equations above is very small.
Finally, substituting Equations (III'51), (I11-35¢), (I11-36b), (III-37b) and (I1I-38b)
into Equation (III-49) and taking the limit, -0, we get the power efficiency

of a thin film distribution over the core/cladding boundary or

2 y
Pcore _ 1 uO.ﬂK‘ (WO,ﬂ)
P ITE 2ndadka2v2 ﬁO,yKO(WO,u}KZ(WO,u) (II1-52a)
M
2 2
wO,p KO(WO,#)
Boul 1+ = 5
2 K, (W
Pcore — 1 n core a ﬁ(),# 1( 0"1)
P S, 2,3 s § / 2 (Il1-52b)
rd [TM 20k " clad ‘11{u0u)l_ncorelxl(wo-ﬂ)l
K 2 2 2
II(UO;J N dad Kl(WOp)
P ore 1
P [Ev~ 2 33"
rad g M gad ok @
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2 2 < 2.2 2
2 2121 KV-I(WV.u) zazKVH(WV-#) KV(WV»#)
u,,aB,, > + > + 32
: : wv,u Wv,u aﬂv'u
2
v KZ(W ) “1“3I1v-1|+“i’4|1v+1l ) U,, al"lev-ll*ai‘slxvnl
viT v 2 2 2
IV(UV..U) wv,u KV(WV.#)
(II1I-52¢)
~2 2~
Pcore _ 1 E (2 - 60.1)11 Ap K A (W L#)
Frad guiding aznfladk v K}.—l(wa,u)K).H(W A_,,) (111-52d)

A\

For simplicity, we have dropped the arguments of K; and J;. The total power

efficiency is given by Equation (I1I-44).

Equations (I1I-52a) thru (II-52¢) are the result of this work whereas the weakly
guiding case, Equation (III-52d), is similar to that derived by Marcuse [1988].

As it was summarized in Tables (III-4) thru (III-6) all Equations obtained
involve at least one approximation -the infinite cladding radius
approximation of the field solution. However, for the special case in which
the cladding of our thin-film fiber is the outside air, n_,,=1.0, Equations (III-
52a) thru (III-52¢) involve no approximation at all. That is because the outside
medium, air, essentially extends to infinity. The power efficiency P of a

thin film coated fiber is a function of



III. Power Injection 72

P st = Pogt(@, iy Meore Metads k- (I1-53)

For a bare core fiber coated in the core/air interface r;;=a and n,4=1.0 and
the number of variables is reduced by two. Notice that in both the case of a
thin film and a bulk distribution of sources the power efficiency is a function
of many variables. This complex functionality makes it difficult to analyze the
behavior of P . It is also difficult to sketch general predictions for a high
injection efficiency by a fluorescent cladding optical fiber. In the next chapter,
some results of model calculations based upon the above expressions allowed

us to formulate a few rules for designing an optical fiber sensor.
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TABLE 1114
MODES I lev? dV ASSUMPTIONS
me
TE Equation (III-47a)
Exact Solution ™ Equation (I1I-47b) A
Hybrid Equation (II47¢)
TE,
Weakly guiding TM and Equation (III-47d) A and B
Hybrid

Summary equations for the integral of the square of the electric field of a thin
film source at an arbitrary position in the cladding. Inner and outer radial
limits of the distribution are given by r; and r =, +8 (650). R, and
R, are the normalized inner and outer radius and are given by r.n/a and

rout/ 4 TESpEctively.

Assumptions: A. Infinite cladding radius in the field solutions (b—eo).

B. Weakly guiding approximation (n_, &=n..,4)-
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TABLEIII-5
MODES I lev2 dV ASSUMPTIONS
me
TE Equation (III-51a)
Exact Solution ™ Equation (ITI-51b) A
Hybrid Equation (II-51¢c)
TE, TM
Weakly guiding and Equation (I1I-51d) A and B
Hybrid

Summary equations for the integral of the square of the electric field of a thin
film source at the core/cladding boundary. Inner and outer radial limits of the
distribution are given by r,=a and r = a+§ (§6—0). R;, and R, are the
normalized inner and outer radius and are given by 1.0 and 1.0+6/a

respectively.

Assumptions: A. Infinite cladding radius in the field solutions (b—).

B. Weakly guiding approximation (Neor&Metad )
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TABLE II1-6
MODES Peore/ Prag ASSUMPTIONS
TE Equation (III-52a)
Exact Solution ™ Equation (III-52b) A
Hybrid Equation (II-52¢)
TE,
Weakly guiding T™M and Equation (III-52d) A and B
Hybrid

Summary equations for the power efficiency of a thin film distribution of
sources. The corresponding Equations are obtained by substituting Equations
(I11-51), (T1-35c¢), (I11-36b), (I1-37b) and (ITI-38b) into Equation (IT1-49). Equation
(III-52d) is similar to Equation (8) of Marcuse [1988].

Assumptions: A. Infinite cladding radius in the field solutions (h— o).

B. Weakly guiding approximation (Megr&N1aq)-




IV. POWER EFFICIENCY OF A
DISTRIBUTION OF SOURCES

IV-1 Introduction

In this chapter we have used the results of the power efficiency of the
previous chapter to determine its behavior as a function of different

parameters and their combinations for specific conditions.

As it can be seem from Equations (IlI-43a) thru (I11-43¢) and Equations (I1I-52a)
thru (III-52¢) the functional behavior of the power efficiency is too involved
to be determined by direct analysis. Added to this, there is also the need to
determine the eigenvalues of our problem from a complicated transcendental
equation. A problem of this magnitude requires the use of computational
techniques. For this reason, we have written a program in FORTRAN to
compute the P against many of the possible variables. In certain cases, the
parametric values used to determine the power efficiency are not realistic.
This approach was used in order to determine the general behavior of the
power efficiency. However, some of the parametric values are within the

realm of the real world.

We have used Equations (11I-43a) thru (I11-43c) for the bulk and Equations
(I11-35) thru (III-37) for both bulk and thin film distributions. As discussed

76
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before, if we use Equations '(III—35) thru (III-37) into Equations (I11-34) we geta

more exact and general result. Le., by using an appropriate R_ . and R, we

out
can determine the P for any distribution of sources with cylindrical
symmetry. For the bulk distribution, the difference between the two
approaches lies in the upper radial limit used in the integral of the square of
the electric field of the bulk distribution. The first one used an infinite value

for the upper radial limit or

f lev. dV=If]“ lev,? r dr dp dz

and the second one used the actual value of the outer radius of this

f lev? dV=fff levfordrdedz
Veources T =Fin

These calculations were performed differently in a heuristic approach.

distribution or

The eigenvalues u,, and W, . are found by using four different
transcendental equations for TM, TE, HE and EH modes. They have limits
that are either well-known or can be calculated [Snyder et. al., 1983]. Using
these limits, we can square the eigenvalues. The ZBRENT subroutine of
Numerical Recipes [Press et. al., 1986] was used to find them. This subroutine

employes the Secant method in conjunction with the Bisection method.
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As it was noticed before, the power efficiency of both bulk and thin film
distributions are very complicated. It is a function of up to five parameters
which involve different combinations of a, 7y, 7oyt Meore Pelad and A. In
order to predict its behavior, we have used two different approaches: in the
first one we have analyzed the behavior of the P for a variable V-number

and in the second one for a constant V-number.

In the first approach, the V-number
V=akv nc%re' ncad= uu2 + W2

can be varied by changing one of its parameters separately namely, a, A,

n__and n_,4. The results were plotted either against the V-number or

core cla
against the actual variable. All of them have revealed a jagged appearance
more or less perceptible depending on whether we are treating the thin-film
or the bulk distribution (Figures (IV-1) thru (IV-4) and Figures (IV-6) thru
(IV-11)). Marcuse [1988] was the first one to discuss this sharp increase. In his
paper he has plotted the power efficiency of a weakly guiding fiber against the
V-number for a fixed core/cladding radius and wavelength. He has also
pointed out that this sharp increase occurs near the cut-off values of the
modes. Near cut-off, the evanescent field is stronger and there is a higher
probabxl;ty Vof power injection. The weakly guiding formulas obtained is

simple enough to allow him to vary the V-number freely, with no regard to

the other parameters. Although, in the real world, his graphs are equivalent
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to a plot of the power efficiency against the index/indices of refraction, he has
not treated neither this case nor the remaining ones, i.e., variable wavelength
and core radius. All these cases are treated in this work and the results are

displayed in this chapter.

In the second approach the behavior of the P was analyzed for a constant
V-number. The V-number was kept constant by changing only two of its

parameters. It was used two techniques:

1) to vary the core and cladding radius a and b and the wavelength 1
at a constant ratios a/A4 and b/a and constant indices of refraction Meore
and n,,4 (notice that although we are varying three parameters only two are
a V-number parameter). It is interesting to notice that for this specific case,
the power efficiency remained constant for variable wavelength and core
radius. This result suggests that both a/4 and b/a are two independent
variables. Notice that the expressions of the thin-film do not involve the
cladding radius b. Consequently, a similar conclusion which does not
involve b and combinations of it also applies. This result essentially
decreases the dimension of the problem by one variable. This makes its
analysis simpler and

2) to vary the indices of refraction of the core and cladding, n_,.and
Mclaq TeSpectively, at the same time. Remember that there are specific values
for the indices of refraction NeorednNd n .4 that allow a constant V-value.
The final result was plotted against the difference MeoreMelag and revealed an

almost linear increase in a log-log scale.
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The constant V approach can be justified by the fact that for a constant V-
number the power efficiency curve is smoother (there are no sharp peaks).
This makes it easier to fit a polynomial equation to the graphs and analyze its
behavior. Notice that since the eigenvalues of a weakly guiding fiber are
independent of the fiber parameters, the P, of this fiber at constant V-
number is directly proportional to the coefficient of the terms inside the
summation sign (Equations (III-43d) and (11I-52d)). However, this
simplification does not occur in the expressions of P derived in this work
(Equations (I1I-43a) thru (III-43¢c) and Equations (I1[-52a) thru (I11-52¢)). This is
because the eigenvalue equation of the exact solution is more complicated

and dependent on more parameters.
V-2 Power Efficiency at Constant a/A

By varying a and 4 in such a way to make the ratio a/A constant and
fixing the indices of refraction, n.q, and n_,4 and the normalized. radius,
R,, and R;, (b/a and 1.0 respectively for the bulk distribution), it can be
concluded that the P g remains unchanged. In order to see that, first we

should recall the values of U, , W, , and V or

uv,p =a '\Ezn@o,e - ﬁi# 4 (II-13¢)

WV,# =4a '\/;3"1 - k 2naad and (II-13d)
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V=akVndee -ndg=YU2+ W2, (I-13e)

Notice that g, 4 €an be rewritten as

ﬁv,u = khefe (IV-1)

where 1. is the effective index of refraction which obeys the inequality

Nclad SMefc S NMeore -

Since k = 2x/4, it can be easily seen that U, ,, W, and V are the same

v v
for the prescribed conditions
a_4 _ _& (IV-2a)
A A An
and
NMeores Nelad » Rin and R, constant. (IV-2b)

Finally, substituting Equation (IV-1) into Equations (III-43) and (III-52) under
Conditions (IV-2), writing b as a proportion in @ and having in mind the

previous result for U, , W,  and V, we find that the P is the same for

v,u
different values of a and A. The same conclusion also applies whenever we

use Equations (III-35a), (III-36a) and (III-37a) in Equations (III-34) of the power
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efficiency using the relations or r,,= aR; and r,,= aR;,. In consequence
the functional dependence of the power efficiency of both bulk and thin-film

distribution are reduced to
Peg = Peff(ka’ b/a, Meorer nclad)'
Peff = Peff(ka' Rin' Beorer nclad)'

respectively. For the special case of a thin film distributed in the core/cladding

boundary, R, =1.0, the previous functionality dependence is reduced to
Peff = Peff(ka’ " core” "clad)'
V-3 Power Efficiency of a Weakly Guiding Fiber

The results for the weakly guiding case are presented in Figures (IV-1) thru
(IV-4). They were derived using the same values as those in Marcuse [1988],
namely, A=1.3 um, a= 10.0um and b/a= 5.0. In order to vary V, we used
a fixed index of refraction for the core and varied the index of refraction of the
cladding, #caq. The difference ep=n_, cMNclad had to be small enough to
simulate a weakly guiding fiber (ep<0.1). For Figures (IV-1a), (IV-3) and
(IV-4a) ep varied roughly from 1073 at V= 0.05 to 102 at V= 10. For Figure
(IV-2) it varied from 107 to 10°2. For higher V-numbers e¢p would increase
even more invalidating the weak guidance condition. For this reason, we

have avoided going further into a higher V-number region. For sake of



IV. Distribution of Sources 83

comparision, we have reproduced with permission Figures 2 and 3 of
Marcuse [1988] (Figures (IV-1b) and (IV-4b), respectively). The figures are for
the bulk distribution, Figures (IV-1) thru (IV-3), and thin film, Figures (IV-4).

i) Bulk Distribution

We have plotted three graphs for the bulk distribution. Figures (IV-1a) and
(IV-2) follow from Equations (I1I-43a) thru (III-43¢). Figure (IV-3) was obtained
using the actual radial outer limit b of the source distribution (Equations

II1-35 thru I1I-37). We start by discussing Figures (IV-1) and (IV-2).

The labels of Figures (IV-1a) and (IV-2) correspond to the V-values at which
the modes start to propagate. For instance, in a weakly-guiding fiber the
modesTEoll, TMO,I and HEZ'I have a cut-off at V =2.405. This is the
corresponding V-value for the first sharp peak in Figures (IV-1) and (IV-2).
All plotted peaks occur at cut-off of the labeled modes [Marcuse, 1988].
Between 0 and 2.405 only the fundamental mode, HEI,I' propagates,
consequently only this mode contributes to the power efficiency in this
region. The plateau observed between V=0 and 0.5 occurs because between

these values
UA:O,] =V. (IV-3)

The height of each plateau can be found by substituting Equation (IV-3) into
(I11-43d) or
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Figure IV-1a. Power Efficiency of a bulk distribution of fluorescent sources
versus the V-number (weakly guiding case). The wavelength, the index of
refraction of the core and the core and cladding radius are held fixed at

A=13um, n_, =14, a=10um and b=50.0um respectively. The Index of

refraction of the cladding varied from 1.399 at V=0.05 to 1.385 at V=10.0.
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Figure IV-1b. Power Efficiency of a bulk distribution of fluorescent sources
versus the V-number using the weakly guiding approximation. The
wavelength and the core and cladding radii are held fixed at 1=1.3um,
a=10.0um and b=50.0um respectively. (From D. Marcuse, "Launching
Light into Fiber Cores from Sources Located in the Cladding", IEEE
Journal of Lightwave Technology, Vol. 6, No. 8, Aug. 1988, pp. 1273,
reproduced with permission; © 1988 IEEE).
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mn

2
B‘m{ ocvas = L - Ko (M) — . V-
Prad < (b2 - az) nczlad k2 K]Z ( Wl:().l ) (bz - a2) nczlad k2

A=O,u=1
where
Wai=0,120,

lim Ko(z)=-1Inz+1In2-0.577

z-0

and

li_?}) K, (z);_(m ;1)! (%r '

For n_,4=1.4 Equation (IV-4) becomes 9.1x10°.

Notice that there is a cut-off degeneracy among many modes in a weakly
guiding fiber. For instance, the modes HE, , TEg , and TM, , have the same
cut-off frequency. However, for an arbitrary fiber, part of this degeneracy is

removed.

The results in Figure (IV-la) are essentially the same as those of, Figure (Iv-

1b) [Marcuse, 1988]. However, the results of this work are slightly higher. We

attribute this difference, possibly, to three factors:
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1) we may have used a higher density of points than Marcuse did. By
doing so we calculated more points near cut-off. As discussed by the previous
author, this would give us a higher value for the power efficiency near the

cut-off region (the closer to cut-off the higher the power efficiency),

2) Marcuse's results assumed the weakly guiding approximation
MeoreMaag=n over the whole interval of V-values. For this reason, his
result is independent of the two indices of refraction and, in order to obtain
his figure, all he had to do was to vary the V-value only. In our case, in
order to vary V we had to vary either Meore OF Hciaq OF both. This results in
bigger differences ep for bigger V-values. This difference, makes the final
result of the power efficiency bigger than using the weakly guiding

approximation and

3) the index of refraction used in Marcuse [1988] might have been slightly
higher than the one used in this work. This conclusion can be justified by
analysing Equation (III-43d). Within the weak guidance approximation U,
and W, , depend only on V. So, for a fixed V-number, the sum in
Equation (III-43-d) is always equal no matter what are the values of the other
parameters of the weakly guiding fiber [Marcuse, 1988]. Consequently, at a
specific V-number, the power efficiency of a weakly guiding fiber would be
directly proportional to the square of the wavelength and inversely
proportional to the square of the index of refraction and the difference of the

square of the cladding and core radius. Stated in another way
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p 1
oc - (IV'S)
k!
Prad minyg (b2 - az) nczlad k2

Equation (IV-5) does not apply when b=a.

Figure (IV-2) was obtained for n core=2-6. The plot was made between V=0
to V= 10 so we could compare it more easily with Figure (IV-1a). It can easily
be seen that the power efficiency of the first fiber is 3.45 times greater than the
power efficiency of the second. This result is in agreement with Equation

(IV-5) which gives us the ratio

(M, =(26/1.4F =345 .

Figure (IV-3) was plotted so we could analyze the effect of the infinite outer
radius approximation introduced in the integral of the square of the electric
field. We can see from there that the peaks corresponding to the HE, , modes
are slightly lower. Also notice that the plateau observed in the previous
figures does not appear here suggesting that this feature is an artifact
introduced by the previous approximation. A closer analysis of the numerical
data indicates that, for some reason, this difference is restricted only to the
cut-off region of the HE, , modes. In conclusion, the infinite outer radius
approximation influences only the region near cut-off for the HE; , modes

and does not introduce serious errors in the results of this work.

o
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ii) Thin Film Distribution

The result for the thin film distribution is presented in Figure (IV-4a). In this
graph, we have used a index of refraction n_,,=1.46. The thin film is
assumed to be located in the core/cladding interface. Compared with the bulk
case, it is much smoother. The reason for this smoothness was discussed by
Marcuse [1988] and is related to the evanescent wave that is emitted from the
sources located further from the core/cladding interface. In other words, in a
bulk distribution we have several layers of fluorescent material which are at
increasing distances from the core boundary. The layers contribute more
power near cut-off which produces the sharp increase in power in these
regions. Therefore, in a bulk distribution, the power efficiency near cut-off is
the sum of the contributions of many infinitesimal layers. This yields the
discontinuity observed. However, for the thin film, we have only one layer.
Consequently the integrated contribution near cut-off is not as dramatic.

However we still have small peaks that occur nearby cut-off.

It is clear from the figures that a thin film distribution in the core/cladding
boundary is more efficient than a bulk one. However the total power
radiated by the thin film is lower because there are fewer sources. In addition
to that, the nearer the sources are to the core/cladding interface the more
evanescent injection we get because the evanescent wave intensity decays
exponentially from the sources. In this way, the closer the sources to the
core/cladding interface, the higher the probability of exciting bound modes.

This also results in a higher efficiency. Our graph reproduces very well
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bulk distribution of fluorescent sources

ding case). The wavelength, the index of

refraction of the core and the core and cladding radius are held fixed at

A=1.3um, n

refraction of the cladding varied from 2.5999 at V

10.0.

=2.6, a=10um and b=50.0um respectively. The Index of
= 0.05 to 2.592 at V =
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Marcuse's results, Figure (IV-4b), at low V-number [Marcuse, 1988].
However, at high V-number, it starts to diverge toward higher values for

reasons discussed previously.

In summary, we have used the exact field solution of the step index profile
fiber to calculate the power injection efficiency of a bulk distribution (Figures
(IV-1a), (IV-2) and (IV-3)) and thin film distribution (Figure (IV-4a)). Figures
(IV-1a) and (IV-2) were obtained using Equations (III-43a) thru (III-43c).
However, Figure (IV-3) was obtained substituting Equations (I1I-35a), (III-36a)
and (IlI-37a) in the general equation of the power efficiency (Equation (ITI-34)).
We stress the fact that although Figures (IV-1a) and (IV-3) are very similar,
they were obtained using two different upper radial limits, r_ ,,—e and
rout=b respectively, in the integral of the square of the electric field. The
reason for the previous approximation resides in the simplification
introduced in the final equations without introducing serious errors. Figure
(IV-4a) was obtained using Equations (III-52a) thru (III-52c). All Figures agree
very well with the weakly guiding results obtained previously by Marcuse
[1988] (see Figures (IV-1b) and (IV-4b)). He has obtained his bulk distribution
results (Equation (III-43d)), using the infinite outer radius limit, r_ ,—o, in

the volume integral of the square of the electric field (Equation III-42). Table

(IV-1) summarizes the approximations involved in this Section.
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Figure IV-3. Power Efficiency of a bulk distribution of fluorescent sources
versus the V-number (weakly guiding case). The wavelength, the index of
refraction of the core and the core and cladding radius are held fixed at
A=1.3um, n_, =14, a=10um and b=50.0um respectively. The Index of

refraction of the cladding varied from 1.399 at V= 0.05to 1.385 at V= 10.0.

This graph was obtained using a finite value, b, for the outer radius of the

distribution in the equation for the power efficiency.
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{Pcore/Prad)*100

Figure IV-4a. Power efficiency of a thin film distribution of sources in the

core/cladding boundary versus the V-number (weakly guiding case). The
wavelength, the index of refraction of the core and the core radius are held

fixed at A=1.3um, n_,_=1.46, and a=10um respectively. The index of
refraction of the cladding varied from 1.4599 at V= 0.05 to 1.322 at V=
29.95.
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Figure IV-4b. Power Efficiency of a thin film distribution of fluorescent
sources versus the V-number using the weakly guiding approximation.
The wavelength and the core and cladding radii are held fixed at
A=1.3um, a=10.0um and b=50.0um respectively. (From D. Marcuse,
"Launching Light into Fiber Cores from Sources Located in the Cladding”,
IEEE Journal of Lightwave Technology, Vol. 6, No. 8, Aug. 1988, pp. 1273,
reproduced with permission; © 1988 IEEE).
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IV-4 Thin Film at an Arbitrary Distance

In order to determine the best position of the thin film within the cladding,
we have plotted the logarithm of P, against the normalized position of the
film R;, = r;,/a (Figure (IV-5)) for a=5.0um, A=0.4um, Neore1l-6 and
Niaqa=14. We can see that the P ¢ decays exponentially with the distance
from the boundary. Such behavior is expected since the total power associated
with the evanescent field also decays in an exponential fashion. In
consequence the closer th'e cladding sources are to the core/cladding boundary

the higher the power efficiency.
IV-5 Power Efficiency Versus Wavelength

We have computed the power efficiency for TE, ,,» TM, ,, EH, , and
HEL”modes (u=1,2,..and v =1, 2, 3, ...) for a wide range of wavelength.
The results are presented in Figures (IV-6) thru (IV-9). We have plotted the
same data first as a function of the V-number and then as a function of the
wavelength A. Notice that the actual independent variable is the
wavelength. All other parameters are held constant. Since the V-number is
inversely proportional to 4, the left-hand side of each graph which have V-
number as independent variable, corresponds to the highest wavelength,
A=2.0um. Similarly, the right-hand side corresponds to the lowest
wavelength and vice-versa. As before, we present results for a bulk

distribution and thin film.
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TABLEIV-1
Figure (IV-1b) Figure (IV-1a) Figure (IV-3)
A A
B C C
D E

Comparative table on the assumptions used in three different results for the

bulk distribution.

Assumptions:

U N @ p

Infinite cladding radius in the fields solutions (b—e).

Weakly guiding approximation (.,.&Mcjaq)-
Arbitrary indices of refraction (1., &1 ,q)-

Infinite outer radius of the source distribution in the
integral of the square of the electric field (r ,,—°)
Finite outer radius of the source distribution in the

integral of the square of the electric field (7 o=
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i) Bulk Distribution

We have plotted four graphs for the bulk distribution, Figures (IV-6) and (IV-
7). In all of them, we have used r;,=a=5.0um and r_,,=b=25.0um for the
inner and outer radius of the distribution respectively. However, we have
used n.,~1.6 and n,,4=1.55 in Figures (IV-6) we used and n_, =3.0 and

core

N.ag=1-1 in Figures (IV-7). We have found that

1) for a given wavelength 4, the bigger the difference between n_, . and
Naq the higher the power efficiency (we will show later that the same holds
true for the V-number). It seems that a similar result (that the gain
coefficient increases with the difference between the indices of refraction) was
obtained for the TE; , modes by Watanabe et. al. (see Figure 5 [Watanabe et.
al., 1973]). This result can be easily explained for the TMy,, modes in terms of
the amplitude of the electric field. The eiectric field of TM , modes in the
cladding region is directly proportional to the square of the ratio n_, /n_.4
[Snyder et. al., 1983]. Since the expansion coefficients are directly proportional
to the amplitude of the electric field so will be the power injected into the core
(see Equation (III-17)). No attempt was made to see whether there is a
similarrelationship between the amplitude of the electric field of the hybrid

modes and the ratio ncore/ Nejad
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Figure IV-5. Logarithm of the power efficiency of a thin-film distribution of
sources versus the thin film normalized distance, R; =r;,/a. The

wavelength, the core radius and the index of refraction of the core are held
fixed at A=0.4um, a=5.0um, n_, ~1.6 and n_,4=1.4. The power
efficiency is higher when the thin film is at the core/cladding boundary.
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2) There is a reinforcement in the power efficiency among the TE, ,
My, and HE; , modes of the weakly guiding fiber (n_ . ~n_.,) and a
reinforcement between HE, , and HE, , modes of the strongly guiding fiber
(Meor@>>Ngaq)- Reinforcement occurs because the corresponding modes
have the same cut-off frequency in each guidance limit (see the cut-off
equation of the hybrid modes in Table 12-4(b) of Snyder et. al.). In other words
the corresponding modes have a degenerate cut-off frequency which can be
removed whenever we use arbitrary indices of refraction, MeoreMelad- Since
they have the same cut-off frequency the power efficiency is necessarily

reinforced,

3) In general the longer the wavelength the higher the power efficiency.
Apparently, this result reflects the characteristics of the behavior of a wave. In
other words the longer the wavelength with respect to the dimensions of the
fiber the more tunneling one should expect from the cladding. ’l;his also
implies that the lower the V-number the higher the power efficiency, a
result which is contrary to the previous belief that a higher V-number
would yield a higher power efficiency [Marcuse, 1988; Lieberman et. al., 1990].
Although, the curve of the power efficiency in Figures (IV-1) thru (IV-3) does
increase with the V-number, it must be stated that in those cases, V was
obtained by changing the difference between the indices of refraction while
here we have changed the V-number by changing the wavelength. In
conclusion, the behavior of the power efficiency against the V-number is

dependent on how V is being changed or, in other words, the power
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Figure IV-6a. Power efficiency of a bulk distribution of sources versus the V-
number. This graph was obtained by varying the wavelength, 4, from
0.3um to 2.0um. The core radius, the cladding radius and the indices of
refraction of the core and cladding are held fixed at a=5.0um, b=25.0um,
n...=1.6and n ,4=1.55.
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Figure IV-6b. Same as Figure IV-6a, using the wavelength, A, instead of the
V-number. The core radius, the cladding radius and the indices of

refraction of the core and cladding are held fixed at a=5.0um, b=25.0um,

feore=l.6 and n ;=155
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Figure IV-7a. Power efficiency of a bulk distribution of sources versus the V-
number. This graph was obtained by varying the wavelength, A, from
0.45um to 2.0um. The core radius, the cladding radius and the indices of
refraction of the core and cladding are held fixed at a=5.0um, b=25.0um,
n..=3.0and n4,4=1.1.
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Figure IV-7b. Same as Figure IV-7a, using the wavelength, A, instead of the
V-number. The core radius, the cladding radius and the indices of
refraction of the core and cladding are held fixed at a=5.0um, b=25.0um,
Meore=3-0 and ny, ,=1.1.
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efficiency does not always increase with the V-number. Later results of this
work have been consistent with the conclusion that the power efficiency does
increase with the difference in indices of refraction, n g sn..4 a conclusion

which can explain Figures (IV-1) thru (IV-3).

4) In the range of small V-number the power efficiency tends to increase
slightly (Figure (IV-6a)). Such behavior can also be observed in Figure (IV-6b)
in the high wavelength' region. Maybe, at small V-numbers, the rate of
increase in the number of modes tends to catch up with the decrease in the
wavelength. The final result is an increase of the power efficiency at low V-
number and a gradual decrease for higher V-numbers. We did not observe
the same behavior in Figures (IV-7) most likely because we could not reach
the low V.number region (the higher the differences in the indices of

refraction the larger the V-number).

ii) Thin Film Distribution

Figures (IV-8) and (IV-9) reproduce the results of the thin film for a variable
wavelength. The values used for the parameters of Figures (IV-8) were the
same as those in Figures (IV-6). We have used the indices of refraction
n.,,&2-5 and n,,4=1.4 in Figures (IV-9). All other parameters unchanged
with respect to the previous figures. Notice that the P remains almost

constant over the whole spectrum of values. Probably, the tunneling effect

that occurs at a high wavelength is no longer important for the thin film
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because of the location and/or reduced number of layers of sources in the

cladding.
IV-6 Power Efficiency Versus Core Radius

Figures (IV-10) and (IV-11) display the behavior of the P with the core
radius for bulk and thin film distributions respectively. For both cases we
have used the values n . =15 and A=0.6um. For n_,, we used 1.4 and 1.0
for bulk and thin film respectively. Notice that for the bulk distribution we
have obtained a general decrease in P,. The peaks observed are the ones
corresponding to the cut-off frequencies of the modes. Again, P, decreases
with the V-number which varies from 5.64 to 56.4. It should be remembered

that there is a linear relationship between the core radius and the V-number.

For the thin film case, we have an increase in the power efficiency, somehow
abrupt, at low V-number, and a slight decrease at high V-number. It is
interesting to notice that, for some reason, the decrease of the P, with the
fiber radius is more pronounced in the bulk case than in the thin film case. In
both cases this decrease may be related to the fact that a big core radius inhibits

the tunneling from the cladding.
IV-7 Power Efficiency Versus n_, -1 ;.4 (V Constant)

Figures (IV-12) and (IV-13) illustrate how the power efficiency behaves with

the difference n 4 and constant V for bulk and thin film distribution

core Mela
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Figure 1V-8a. Power efficiency of a thin-film distribution of sources versus the
V-number. This graph was obtained by varying the wavelength, A, from
0.3um to 2.0um. The core radius and the indices of refraction of the core
and cladding are held fixed at a=5.0um, n_, =1.6 and n,4=1.55.
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Figure IV-8b. Same as Figure IV-8a (thin-film) using the wavelength, 1,
instead of the V-number. The core radius and the indices of refraction of

the core and cladding are held fixed at a=5.0um, n_, =1.6 and Mjag=1.55.



IV. Distribution of Sources 108

0 ¥
251
o~
:
) nof
bud
L
—~
K
I\ NSt 1
B
T
v
8
o 310
B
~
0S¢
200 A . a A a a PN 2 N "
40 0 60 70 80 9% 100 1o 120 130 140 150
v

Figure IV-9a. Power efficiency of a thin-film distribution of sources versus the
V-number. This graph was obtained by varying the wavelength, A, from
0.3um to 2.0um. The core radius and the indices of refraction of the core
and cladding are held fixed at a=5.0um, N, =25 and n ,q=14.
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Figure IV-9b. Same as Figure IV-9a (thin-film) using the wavelength, A,
instead of the V-number. The core radius and the indices of refraction of

the core and cladding are held fixed at a=5.0um, n_ =2.5 and n,,=14.
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Figure 1V-10. Power efficiency of a bulk distribution of sources versus the
radius a. The cladding radius is given by 5.0a. The V-number varied
from 5.64 to 56.4. The wavelength, A, and the indices of refraction of the

core and cladding are held fixed at 4=0.6um, n.,.e1.5 and n ,4=1.4

respectively.
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Figure IV-11. Power efficiency of a thin-film distribution of sources versus the

radius a. The V-number varied from 11.7 to 186.74. The wavelength, A4,
and the indices of refraction of the core and cladding are held fixed at

A=0.6um, n =15 and n_,4=1.0 respectively.
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respectively. The results were obtained for four different V-numbers and
were plotted in a log-log scale. Using a linear equation we have found a
correlation coefficient of one for the first three V-numbers. For the forth V-
number, V=62.83, the correlation coefficient was 0.998 for a linear equation
and 1.0 for a quadratic one. Apparently, the higher the V-number the more
the graph’deviates from a linear equation in a log-log scale. These show that
the greater the difference between the indices of refraction, the higher the
power efficiency. As discussed before, the apparent high value of the power
efficiency at high V-number is due not to the increase in this value but to
bigger differences between the indices of refraction. The upper portion of each
curve is the highest power efficiency that can be reached at these particular
values. That is because at those points, the index of refraction of the cladding
is equal to one (the lowest possible index of refraction and the highest possible
difference between the indices at V constant). As both indices of refraction
increase, the difference between them and the power efficiency decrease. The
indices of refraction obey the inequality 3.5>n_, > ,4>1.0. In this way, the
lower extremes of each curve corresponds to 1 ,,=3.5. It may be argued that
this value of the index of refraction is not realistic. However, as a theoretical
work, extreme cases like this one, are of interest because they help
determining the general behavior of this system. Notice that the V-numbers
used have a very big difference between each other. Have we had used values

which were closer to each other we could have observed lines that obey the

classical increase of the power efficiency at the cut-off value.
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Figure IV-12. Power efficiency of a bulk distribution of sources versus the
difference n , -n.,.4- The indices of refraction are restricted to the

interval 3.5>n_ >n_.,>1.0 under the condition of constant V-number.
The smaller the difference, the greater the indices of refraction. The core
radius, the cladding radius and the wavelength, A, are held fixed at
a=6.0um, b=30.0um and A=0.6um, respectively.



IV. Distribution of Sources 114

100
V = 62.83
10
o~ V =31.148
*
&
— V = 15.7079
* 1
<
o
& V =626
S~
v g
™
(=}
v
&
.01
<~ <- Direction of Increasing in the Indices of Refraction
001 y -t
01 01 1 1

ncore - nclad

Figure IV-13. Power efficiency of a thin-film distribution of sources versus the
difference n ,,¢n,q- The indices of refraction are restricted to the
interval 3.5>1 ,.&Mc1aq>1-0 under the condition of constant V-number.
The smaller the difference, the greater the indices of refraction. The core
radius and the wavelength, A, are held fixed at a=6.0um and A=0.6um
respectively.
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IV-8 Bare Core Fiber with a Thin Film Coating

We conclude our data analysis with an additional graph that simulates a very
useful fiber sensor: the bare fiber core coated with a thin film of fluorescent
material. Such fiber can be modeled as a cylindrical rod whose cladding is the
air itself (n.;,4=1.0). The coating is assumed to be thin enough so the effect of
its index of refraction can be ignored. In order to know what is the behavior
of the power efficiency of this fiber for a variable n_,,, we have plotted
Figure (IV-14). As it was already expected, the power efficiency increases with
the n.,.. (the higher the difference n_, :n,.4, the higher the power
efficiency). The increase in the power efficiency is almost linear but can not
keep on growing indefinitely. Marcuse has found a power efficiency as high as
60% [Marcuse, 1988]. Our graph shows that it could go even higher, 85%. If we
could use larger and larger core indices of refraction, we should expect higher
efficiencies. However, we should point out that the results discussed refer
only to the forward propagating modes of the fiber. Consequently, if we take
into account both forward and backward propagating modes, the final result
would exceed the 100% limit of the power efficiency! Later on, in a personal
communication to Marcuse, we have suggested that the total power radiated,
P .4 may had been understimated by a factor of two. However, in a
subsequent communication, Marcuse has stated that although the total power
radiated may had been understimated, the correct expression for P, , may
include the sum of both forward and backward propagating bound modes

yielding the following result for the power efficiency
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Figure IV-14. Power efficiency of a thin-film distribution of sources versus the
index of refraction of the core n.,, The core radius, the wavelength and

the index of refraction of the cladding are held fixed at a=5.0um,
A=0.6um and n_,4=1.0 respectively. The V-number varied from 29.73 to

202.79.
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P _ PCOTE
ff =
© Prad +2Pcore (IV-6)
as opposed to
Pegr = Peore (I1-34a)
Ijrad

So, if Equation (IV-6) is correct, the problem of the P greater than 100%
has been solved, Equation (III-34a) would still be a good approximation

whenever P_ >>>P_ . or P . is small enough (lesser than 0.1) and most of

core
the plots presented, particularly the ones of the bulk distribution, would be

valid.

Marcuse has cautioned (in a private communication) that the expression for
P .4 is still approximate. More specifically, back in the calculation of P__4,
Section (I1I-4), a plane wave was used to describe both electric and magnetic
fields of the radiation modes [Marcuse, 1975]. Accordingly, the expression of

the total power radiated, P’ has to involve the actual fields of the

rad”
radiation modes. Although these expressions were presented by Snyder et. al.
[1983], Chapter 25, Snyder [1971] and Sammut [1982], they haven't been used
yet in the corresponding integral. However, since at infinity the radiation

fields are well described by a plane wave, it is our belief that the plane wave

approximation is a good one.
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V. CONCLUSIONS AND FURTHER WORK

Previous work on the light injection efficiency into the core of a fiber from
sources in the cladding have made use of the fields of a weakly guiding fiber
[Marcuse, 1988]. This approximation simplifies the analysis of the power
efficiency by introducing universal values for the eigenvalues of different
fibers with same V-number, but can not predict accurately the behavior of
the injected light into a fiber with arbitrary differences in indices of refraction.
Although Marcuse has analyzed the behavior of his weakly guiding fiber as a
function of the V-number, he did not do so for the other parameters. We
have extended Marcuse's work by using the exact field solution in the
expressions of the power efficiency, P, and analyzed its behavior as a
function of the remaining parameters. Although more complicated and
harder to interpret, our formulas allow us to analyze the power injection
efficiency of fibers with arbitrary differences in the indices of refraction. The
results obtained are relevant for the design of more efficient optical fiber

distributed sensors and are summarized below.

We have confirmed the weakly guiding results of Marcuse [1988]. However,
we found that the P, does not always increase with the V-number but
with the difference in the indices of refraction, n gy ¢n.,q. This conclusion

could not be easily reached by Marcuse because of his approximation.

118
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For a fixed ratio a/A, outer radius of the distribution and indices of
refraction, the P, is independent of the core radius, a, and the wavelength,

A. This suggests that a/A is an independent variable.

We have also found that, in general, the P ¢ of the bulk distribution
increases with the wavelength, 1. However, for the thin film, the P
remains almost constant. The first result implies a decrease of the power
efficiency with the V-number which is contrary to the general belief that the
power efficiency would increase with the V-number [Marcuse, 1988;

Lieberman et. al., 1990].

The behavior of the P with the fiber radius is also different for the bulk and
thin film distributions. For the bulk case the power efficiency decreases for
bigger values of the core radius. However, for the thin film it increases at
small values of core radius and decreases slightly for bigger values. Again, we

have obtained a decrease of the power efficiency with the V-number.

A final result states that the power efficiency increases with the difference
between the indices of refraction MeoreMclaq fOr both bulk and thin film
distributions. Consequently, in order to build a fiber sensor which has the best
performance, we should use a source coating that emits light of high
wavelength, use the smallest possible core for fibers with a bulk distribution
and a slightly larger one for a thin film fiber. A fiber with a large refractive
indices differential is optimum for both distributions. Nothing can be

concluded for the dependence of the power efficiency with the cladding radius
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b because of the infinite cladding approximation used at the very beginning.

It is hard to compare a thin film fiber coating with the bulk one. Although,
the efficiency of the thin film is at least three orders of magnitude higher,
what really matters is the total signal collected at the end of the fiber [Marcuse,
1988]. Experimental results by Glass et. al. [1987] on the signal response of both
distributions have determined that the bulk distribution signal is higher.
However we must have in mind that, for both distributions, most of the
evanescent interaction occurs at the core/cladding boundary, for this reason,

it is desirable to accumulate as many sources as possible in this region.

Due to the infinite cladding approximation, the fields used to compute the
power efficiency are independent of the cladding radius, b. The later
dependency in b in the expression of the power efficiency of the bulk
distribution arises because of the finite distribution of the cladding sources, in
other words, the parameter b that appears in these equations is related to

s and not to the cladding radius itself! Additional work is required to

out

determine a more accurate behavior of the P with b.

The plane wave approximation used to calculate the total power radiated
could be tested if we could integrate Equation (III-27) using the actual
radiation modes of the fiber. Apparently, it can be done. However, if that is
not the case, we still could compare both results (plane wave and the
expression for the radiation modes) using the special case of a current source

j polarized in the z-direction. Choosing this polarization could simplify the
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integration of Equation (III-27).

Further experimental work should be undertaken to verify our model. This
seems to be the most logical follow up to this work. Such an experiment was
conducted earlier by Glass et. al. [1987], Love et. al. [1988] and Lieberman et. al.
[1990]. The first two authors used a ray theory approach (geometric optics) to
compare their experimental results. They were mainly interested in the total
power injected into the fiber. However, Lieberman et. al. [1990], have
determined the power éfficiency of a fluorescent cladding fiber for a single
experimental data point. They have found an agreement within an order of
magnitude; a result that lends support to Marcuse's theory and the current

work as well.

In summary, the richness of results provided by this rather simple fiber, the
circular step index profile, suggests that more complicated fiber geometries

and index profiles may have many other characteristics well worth exploring.
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